精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左焦点为F,点,过M的直线与椭圆E交于AB两点,线段AB中点为C,设椭圆EAB两点处的切线相交于点PO为坐标原点.

1)证明:OCP三点共线;

2)已知是抛物线的弦,所在直线过该抛物线的准线与y轴的交点,是弦在两端点处的切线的交点,小明同学猜想:在定直线上.你认为小明猜想合理吗?若合理,请写出所在直线方程;若不合理,请说明理由.

【答案】1)证明见解析; 2)合理,在直线

【解析】

1)设出直线的方程,联立椭圆方程,根据韦达定理,利用导数求得任一点处切线的斜率,从而解得切线方程,得到点的坐标,由即可容易判断;

2)联立的方程和抛物线方程,利用导数求得处的切线方程,结合已知条件,即可容易证明.

1)设,直线AB的方程为联立

,消去x整理得

﹐得

由椭圆对称性,设是椭圆x轴上方的任意一点,

则由

所以在处的切线斜率为

故在处切线方程为

结合化简得

切线PA方程为:,同理

联立两切线方程消去y

联立解得

AB中点可得

CP三点共线.

2)合理,在直线上.

证明如下:设

直线斜率一定存在,

联立消去y

抛物线处的切线方程为

同理在处的切线方程为

联立解得

在直线上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数处的切线与直线平行,求实数的值;

(2)试讨论函数在区间上的最大值;

(3)若时,函数恰有两个零点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三(1)班在一次语文测试结束后,发现同学们在背诵内容方面失分较为严重.为了提升背诵效果,班主任倡议大家在早、晚读时间站起来大声诵读,为了解同学们对站起来大声诵读的态度,对全班50名同学进行调查,将调查结果进行整理后制成下表:

考试分数

频数

5

10

15

5

10

5

赞成人数

4

6

9

3

6

4

1)欲使测试优秀率为30%,则优秀分数线应定为多少分?

2)依据第1问的结果及样本数据研究是否赞成站起来大声诵读的态度与考试成绩是否优秀的关系,列出2×2列联表,并判断是否有90%的把握认为赞成与否的态度与成绩是否优秀有关系.

参考公式及数据:.

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】笔、墨、纸、砚是中国独有的文书工具,即文房四宝.笔、墨、纸、砚之名,起源于南北朝时期,其中指的是宣纸,始于唐代,产于泾县,因唐代泾县隶属宣州管辖,故因地得名宣纸,宣纸按质量等级分类可分为正牌和副牌(优等品和合格品)某公司生产的宣纸为纯手工制作,年产宣纸10000刀,该公司按照某种质量指标x给宣纸确定质量等级,如下表所示:

x的范围

质量等级

正牌

副牌

废品

公司在所生产的宣纸中随机抽取了一刀(100张)进行检验,得到的频率分布直方图如上图所示.已知每张正牌宣纸的利润为12元,副牌宣纸的利润为6元,废品宣纸的利润为-12.

1)试估计该公司生产宣纸的利润;

2)该公司预备购买一种售价为100万元的机器改进生产工艺,这种机器使用寿命为一年,不影响产量,这种机器生产的宣纸的质量指标x服从正态分布,改进工艺后正牌和副牌宣纸的利润都将受到不同程度的影响,观测的数据如下表所示:

x的范围

一张宣纸的利润

12

8

8

3

频率

0.5

0.5

0.5

0.5

将频率视为概率,请判断该公司是否应该购买这种机器,并说明理由.

附:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为(其中为参数),以原点为极点,以轴为极轴建立极坐标系,曲线的极坐标方程为为常数,且),直线与曲线交于两点.

1)若,求实数的值;

2)若点的直角坐标为,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为进一步规范校园管理,强化饮食安全,提出了远离外卖,健康饮食的口号.当然,也需要学校食堂能提供安全丰富的菜品来满足同学们的需求.在学期末,校学生会为了调研学生对本校食堂A部和B部的用餐满意度,从在A部和B部都用过餐的学生中随机抽取了200人,每人分别对其评分,满分为100分.随后整理评分数据,将分数分成6组:第1,第2,第3,第4,第5,第6,得到A部分数的频率分布直方图和B部分数的频数分布表.

分数区间

频数

7

18

21

24

70

60

定义:学生对食堂的满意度指数

分数

满意度指数

0

1

2

3

4

5

1)求A部得分的中位数(精确到小数点后一位);

2A部为进一步改善经营,从打分在80分以下的前四组中,采用分层抽样的方法抽取8人进行座谈,再从这8人中随机抽取3人参与端午节包粽子实践活动,在第3组抽到1人的情况下,第4组抽到2人的概率;

3)如果根据调研结果评选学生放心餐厅,应该评选A部还是B部(将频率视为概率)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)若存在两个极值点,且关于的方程恰有三个实数根,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为,准线为为过焦点且垂直于轴的抛物线的弦,已知以为直径的圆经过点.

1)求的值及该圆的方程;

2)设上任意一点,过点的切线,切点为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某品种一批树苗生长情况,在该批树苗中随机抽取了容量为120的样本,测量树苗高度(单位:cm),经统计,其高度均在区间[1931]内,将其按[1921)[2123)[2325)[2527)[2729)[2931]分成6组,制成如图所示的频率分布直方图.其中高度为27cm及以上的树苗为优质树苗.

1)求图中a的值,并估计这批树苗高度的中位数和平均数(同一组数据用该组区间的中点值作代表)

2)已知所抽取的这120棵树苗来自于AB两个试验区,部分数据如下列联表:将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与AB两个试验区有关系,并说明理由.

参考数据:

参考公式:,其中

查看答案和解析>>

同步练习册答案