精英家教网 > 高中数学 > 题目详情

已知二次函数h(x)=ax2+bx+c(其中c<3),其导函数的图象如图,f(x)=6lnx+h(x)

(1)求f(x)在x=3处的切线斜率;
(2)若f(x)在区间(m,m+)上是单调函数,求实数m的取值范围;
(3)若对任意k∈[-1,1],函数y=kx(x∈(0,6])的图象总在函数y=f(x)图象的上方,求c的取值范围

(1)0;(2)实数m的取值范围为;(3)c的取值范围

解析试题分析:(1)首先根据导函数的图象可得导函数的解析式,从而求得中的,然后再求的导数,由此可得f(x)在点处的切线斜率 (2),这里并不含参数,可以求出它的单调区间 要使 f(x)在区间(m,m+)上是单调函数,只需(m,m+)在的单调区间内即可,然后通过解不等式即得m的取值范围;
(3)函数y=kx(x∈(0,6])的图象总在函数y=f(x)图象的上方,则恒成立 分离参数得,恒成立,又因为k∈[-1,1],所以 
然后利用导数求的最大值,再解不等式即可求得c的取值范围
试题解析:(1) 
的图象过点(0,-8),(4,0),所以
于是

∴f(x)在点处的切线斜率为              3分
(2),列表如下:

x
(0,1)
1
(1, 3)
3
(3,+∞)

+
0

0
+
f(x)
单调递增
极大值
单调递减
极小值
单调递增
所以f(x)的单调递增区间为(0,1)和(3,+∞),f(x)的单调递减区间为(1,3)
因为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求处的切线方程;
(Ⅱ)求的单调区间;
(Ⅲ)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)若,求函数的单调区间;
(Ⅱ)求证:
(Ⅲ)若函数的图象在点处的切线的倾斜角为,对于任意的,函数的导函数)在区间上总不是单调函数,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求曲线处的切线方程;
(Ⅱ)设函数,求函数的单调区间;
(Ⅲ)若在上存在一点,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)当a=1时,求函数f(x)的最小值;
(II)当a≤0时,讨论函数f(x)的单调性;
(III)是否存在实数a,对任意的x1,x2(0,+∞),且x1≠x2,都有恒成立.若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为自然对数的底数).
(1)当时,求的单调区间;
(2)对任意的恒成立,求的最小值;
(3)若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,.
(Ⅰ)当时,求曲线处的切线的方程;
(Ⅱ)如果存在,使得成立,求满足上述条件的最大整数;
(Ⅲ)如果对任意的,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x-ln(x+a)的最小值为0,其中a>0.
(1)求a的值;
(2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)若,求的极小值;
(Ⅱ)在(Ⅰ)的结论下,是否存在实常数,使得?若存在,求出的值.若不存在,说明理由.
(Ⅲ)设有两个零点,且成等差数列,试探究值的符号.

查看答案和解析>>

同步练习册答案