精英家教网 > 高中数学 > 题目详情
14.四棱锥P-ABCD中,四边形ABCD为平行四边形,AC与BD交于点O,点G为BD上一点,BG=2GD,$\overrightarrow{PA}$=$\overrightarrow{a}$,$\overrightarrow{PB}$=$\overrightarrow{b}$,$\overrightarrow{PC}$=$\overrightarrow{c}$,用基底{$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$}表示向量$\overrightarrow{PG}$=$\frac{2}{3}\overrightarrow{a}-\frac{1}{3}\overrightarrow{b}+\frac{2}{3}\overrightarrow{c}$.

分析 利用向量的三角形法则、平行四边形法则即可得出.

解答 解:$\overrightarrow{PG}$=$\overrightarrow{PB}+\overrightarrow{BG}$=$\overrightarrow{PB}+\frac{2}{3}\overrightarrow{BD}$=$\overrightarrow{PB}+\frac{2}{3}$$(\overrightarrow{BA}+\overrightarrow{BC})$=$\overrightarrow{PB}$+$\frac{2}{3}(\overrightarrow{PA}-\overrightarrow{PB}+\overrightarrow{PC}-\overrightarrow{PB})$=$\frac{2}{3}$$\overrightarrow{PA}-\frac{1}{3}\overrightarrow{PB}$+$\frac{2}{3}\overrightarrow{PC}$=$\frac{2}{3}\overrightarrow{a}-\frac{1}{3}\overrightarrow{b}+\frac{2}{3}\overrightarrow{c}$.
故答案为:$\frac{2}{3}\overrightarrow{a}-\frac{1}{3}\overrightarrow{b}+\frac{2}{3}\overrightarrow{c}$.

点评 本题考查了向量的三角形法则、平行四边形法则及其运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.下列判断错误的是(  )
A.“am2<bm2”是“a<b”的充分不必要条件
B.命题“?x∈R,x2-x-1≤0”的否定是“$?{x_0}∈{R},{x_0}^2-{x_0}-1>0$”
C.若p,q均为假命题,则p∧q为假命题
D.若ζ~B(4,0.25),则Dξ=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点分别为F1,F2,焦距为2c,直线$y=\frac{{\sqrt{3}}}{3}(x+c)$与双曲线的一个交点P满足∠PF2F1=2∠PF1F2,则双曲线的离心率e为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$2\sqrt{3}+1$D.$\sqrt{3}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.一直线l过直线l1:3x-y=3和直线l2:x-2y=2的交点P,且与直线l3:x-y+1=0垂直.
(1)求直线l的方程;
(2)若直线l与圆心在x正半轴上的半径为$\sqrt{2}$的圆C相切,求圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知抛物线的方程为y=ax2,且经过点(1,4),则焦点坐标为(0,$\frac{1}{16}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.过点C(0,$\sqrt{2}$)的椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,椭圆与x轴交于两点A(a,0),B(-a,0),过点C的直线l与椭圆交于另一点D,并与x轴交于点P,直线AC与BD交于点Q.
(1)求椭圆的方程;
(2)当直线l过椭圆右焦点时,求线段CD的长;
(3)当点P异于点B时,求证:$\overrightarrow{OP}$•$\overrightarrow{OQ}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知命题p:x2+2mx+(4m-3)>0的解集为R,命题q:m+$\frac{1}{m-2}$的最小值为4,如果p与q只有一个真命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥A-BCDE中,底面BCDE是∠BCD=90°的梯形,CD∥BE,AB⊥底面BCDE,BE=4AB=2BC=2CD,点F为AE的中点.
(1)求证:FD∥平面ABC;
(2)求异面直线AC与DE所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.a=log20.7,b=($\frac{1}{5}$)${\;}^{\frac{2}{3}}$,c=($\frac{1}{2}$)-3,则a,b,c的大小关系是(  )
A.c>b>aB.b>c>aC.c>a>bD.a>b>c

查看答案和解析>>

同步练习册答案