精英家教网 > 高中数学 > 题目详情
20.2loga(M-2N)=logaM+logaN,则$\frac{M}{N}$的值为(  )
A.$\frac{1}{4}$B.4C.1D.4或1

分析 利用对数运算法则化简求解即可.

解答 解:2loga(M-2N)=logaM+logaN,M>2N>0,
可得(M-2N)2=MN,即M2-5MN+4N2=0,
可得$(\frac{M}{N})^{2}-5•\frac{M}{N}+4=0$,解得$\frac{M}{N}=4$,或$\frac{M}{N}=1$(舍去).
故选:B.

点评 本题考查对数运算法则以及方程解的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知由于城市的发展,合肥与南京之间的人员交流频繁,为了缓解交通压力,拟修建一条专用铁路,用一列火车作为交通车,已知该火车每日往返的次数y是车头每次拖挂车厢节数x的一次函数,若车头拖挂4节车厢,则每日往返16次,若车头每次拖挂7节车厢,则每日往返10次.
(Ⅰ)求火车每日往返次数y与拖挂车厢节数x的函数关系式;
(Ⅱ)求这列火车每天运营的车厢的总节数S关于拖挂车厢节数x的函数关系式;
(Ⅲ)若每节车厢载客110人,求每次车头拖挂多少节车厢时,每天运送的旅客人数最多?并计算出每天最多运送的客人人数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lg(100x+1)-ax,x∈R.
(Ⅰ)若函数f(x)是偶函数,求实数a的值;
(Ⅱ)在(Ⅰ)的条件下证明,函数f(x)在[0,+∞)上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在x(1+x)6的展开式中,含x4项的系数为(  )
A.30B.20C.15D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{(a-\frac{1}{2})x-2a+1,x≥1}\\{{a}^{x},x<1}\end{array}\right.$,在R上为减函数,则实数a的取值范围为[$\frac{1}{4}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆C与y轴相切,圆心在x轴下方并且与x轴交于A(1,0),B(9,0)两点.
(Ⅰ)求圆C的方程;
(Ⅱ)若直线l过点A(1,0)且被圆C所截弦长为6,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=$\frac{π}{4}$与曲线$\left\{\begin{array}{l}{x=t}\\{y=(t-2)^{2}}\end{array}\right.$(t为参数)相交于A,B两点,则线段AB的中点的直角坐标为($\frac{5}{2}$,$\frac{5}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.复数$\frac{-2i}{(1+{i)}^{3}}$的虚部为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)已知cos(α-$\frac{β}{2}$)=-$\frac{1}{9}$,sin($\frac{α}{2}$-β)=$\frac{2}{3}$,且$\frac{π}{2}$<α<π,0$<β<\frac{π}{2}$,求cos$\frac{α+β}{2}$值.
(2)已知tanα=2,求$\frac{cos(π-α)cos(\frac{π}{2}+α)sin(α-\frac{3π}{2})}{sin(3π+α)sin(α-π)cos(π+α)}$的值.

查看答案和解析>>

同步练习册答案