精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥PABCD中,PA⊥底面ABCD,底面ABCD为梯形,ADBCCDBCAD2ABBC3PA4MAD的中点,NPC上一点,且PC3PN.

(1)求证:MN∥平面PAB

(2)求点M到平面PAN的距离.

【答案】(1)证明见解析;(2) .

【解析】试题分析:(1)NHBCPB于点H,连接AH,得四边形AMNH为平行四边形,所以MNAH,所以MN∥平面PAB;(2)由等体积法得VMPACVPAMC,即4h×4,所以h

试题解析:

(1)在平面PBC内作NHBCPB于点H,连接AH

在△PBC中,NHBC,且NHBC=1,AMAD=1.

ADBC,∴NHAMNHAM

∴四边形AMNH为平行四边形,∴MNAH

AH平面PABMN平面PAB

MN∥平面PAB.

(2)连接ACMCPM,平面PAN即为平面PAC,设点M到平面PAC的距离为h.

由题意可得CD=2AC=2

SPACPA·AC=4

SAMCAM·CD

VMPACVPAMC,得SPAC·hSAMC·PA

即4h×4,∴h

∴点M到平面PAN的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin 2xcos2x.

(1)求f(x)的周期和最小值;

(2)将函数f(x)的图像上每一点的横坐标伸长到原来的两倍(纵坐标不变),再把所得图像上的所有点向上平移个单位,得到函数g(x)的图像,当时,求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题分)

已知定义在上的两个函数 图象有公共点,且在公共点处的切线相同.

)用表示

)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知在极坐标系和直角坐标系中,极点与直角坐标系的原点重合,极轴与轴的非负半轴重合,曲线的极坐标方程为曲线的参数方程为为参数.

1)求曲线的直角坐标方程和曲线的普通方程;

(2)判断曲线与曲线的位置关系,若两曲线相交,求出两交点间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着医院对看病挂号的改革,网上预约成为了当前最热门的就诊方式,这解决了看病期间病人插队以及医生先治疗熟悉病人等诸多问题;某医院研究人员对其所在地区年龄在10~60岁间的位市民对网上预约挂号的了解情况作出调查,并将被调查的人员的年龄情况绘制成频率分布直方图,如下图所示.

(Ⅰ)若被调查的人员年龄在20~30岁间的市民有300人,求被调查人员的年龄在40岁以上(含40岁)的市民人数;

(Ⅱ)若按分层抽样的方法从年龄在以内及以内的市民中随机抽取5人,再从这5人中随机抽取2人进行调研,求抽取的2人中,至多1人年龄在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据国家环保部新修订的《环境空气质量标准》规定:居民区的年平均浓度不得超过3S微克/立方米, 24小时平均浓度不得超过75微克/立方米.某市环保局随机抽取了一居民区20162024小时平均浓度(单位:微克/立方米)的监测数据,数据统计如图表:

组别

浓度(微克/立方米)

频数天)

频率

第一组

3

0.15

第二组

12

0.6

第三组

3

0.15

第四组

2

0.1

(Ⅰ)将这20天的测量结果按表中分组方法绘制成的样本频率分布直方图如图.

(ⅰ)求图中的值;

(ⅱ)在频率分布直方图中估算样本平均数,并根据样本估计总体的思想,从的年平均度考虑,判断该居民区的环境质量是否需要改善?并说明理由.

(Ⅱ)将频率视为概率,对于2016年的某3天,记这3天中该居民区24小时平均浓度符合环境空气质量标准的天数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)若的极值点的值

)若单调递增的取值范围

)当方程有实数根的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)求函数的单调增区间;

(2)当时,记,是否存在整数,使得关于的不等式有解?若存在,请求出的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)sinωxcosωxcos2ωx (ω0),经化简后利用“五点法”画其在某一周期内的图象时,列表并填入的部分数据如下表:

x

f(x)

0

1

0

1

0

(1)请直接写出①处应填的值,并求函数f(x)在区间上的值域;

(2)ABC的内角ABC所对的边分别为abc,已知f(A)1bc4a,求△ABC的面积.

查看答案和解析>>

同步练习册答案