精英家教网 > 高中数学 > 题目详情
4.给出如下命题,正确的序号是(  )
A.命题:?x∈R,x2≠x的否定是:?x0∈R,使得x02≠x
B.命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5
C.若ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件
D.命题:?x0∈R,x02+a<0为假命题,则实数a的取值范围是a>0

分析 利用命题的否定判断A的正误;四种命题的逆否关系判断B的正误;充要条件判断C的正误;命题的真假判断D的正误;

解答 解:对于A,命题:?x∈R,x2≠x的否定是:?x0∈R,使得x02≠x0,不满足命题的否定形式,所以不正确;
对于B,命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5,不满足否命题的形式,所以不正确;
对于C,若ω=1是函数f(x)=cosx在区间[0,π]上单调递减的,而函数f(x)=cosωx在区间[0,π]上单调递减的,ω≤1,所以ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件,正确.
对于D,命题:?x0∈R,x02+a<0为假命题,则命题:a≥0,?x∈R,x2+a≥0是真命题;所以,命题:?x0∈R,x02+a<0为假命题,则实数a的取值范围是a>0,不正确;
故选:C.

点评 本题考查命题的真假的判断与应用,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.一个几何体的三视图如图所示,其表面积为(  )
A.24B.72C.60D.48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若方程x2+y2-2x-4y+m=0表示圆,则m的取值范围是(  )
A.m≥5B.m≤5C.m>5D.m<5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知$\overrightarrow{a},\overrightarrow{b}$是单位向量,它们的夹角为1200,则$\overrightarrow{a}•(\overrightarrow{a}-\overrightarrow{4b})$的值为(  )
A.3B.-1C.$1+2\sqrt{3}$D.$1-2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知二次函数f(x)满足f(-2)=f(4)=0,且f(x)在R上有最小值-9
(1)求f(x)的解析式    
(2)求不等式f(x)≤0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和Sn,满足Sn=$\frac{{n}^{2}}{2}$-$\frac{n}{2}$,数列{bn}为等比数列,且b2=$\frac{1}{4}$,b5=-$\frac{1}{32}$,cn=4-2b${\;}_{{a}_{n+1}}$.n∈N*
(1)求数列{cn}的通项公式:
(2)设Tn为数列{cn}的前n项和,若对任意n∈N*,都有p•(Tn-4n)∈[1,3],求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一天,小亮看到家中的塑料桶中有一个竖直放置的玻璃杯,桶子和玻璃杯的形状都是圆柱形,桶口的半径是杯口半径的2倍,其主视图如左图所示.小亮决定做个试验:把塑料桶和玻璃杯看作一个容器,对准杯口匀速注水,注水过程中杯子始终竖直放置,则下列能反映容器最高水位h与注水时间t之间关系的大致图象是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,已知$\overrightarrow{|AB|}=\sqrt{3},\overrightarrow{|AC}|=\overrightarrow{|BC|}=1$,则 $\overrightarrow{AB}•\overrightarrow{AC}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知$a+\frac{1}{a}=7$,则${a^{\frac{1}{2}}}+{a^{-\frac{1}{2}}}$=(  )
A.3B.9C.-3D.±3

查看答案和解析>>

同步练习册答案