精英家教网 > 高中数学 > 题目详情

【题目】已知顶点为原点的抛物线C的焦点与椭圆的上焦点重合,且过点.

1)求椭圆的标准方程;

(2)若抛物线上不同两点AB作抛物线的切线,两切线的斜率,若记AB的中点的横坐标为mAB的弦长,并求的取值范围.

【答案】1;(2).

【解析】

1)由已知设抛物线方程为:,求出抛物线方程,从而可求出抛物线的焦点,进而求出椭圆的标准方程.

2)设,求出AB两点切线的斜率,根据可得

,由AB两点直线的斜率从而可求出,再由弦长公式即可求解.

1)由题意可知,设抛物线方程为:

在抛物线C上,

所以抛物线C的方程为

所以椭圆的上焦点为

所以椭圆的标准方程为

(2)设

A点处的切线的斜率

B点处的切线的斜率

,所以

所以

,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地拟建造一座体育馆,其设计方案侧面的外轮廓线如图所示:曲线是以点为圆心的圆的一部分,其中是圆的切线,且,曲线是抛物线的一部分,,且恰好等于圆的半径.

1)若米,米,求的值;

2)若体育馆侧面的最大宽度不超过75米,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】九章算术中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马底面是长方形,且有一条侧棱与底面垂直的四棱锥和一个鳖臑四个面均为直角三角形的四面体在如图所示的堑堵中,已知,若阳马的外接球的表面积等于,则鳖臑的所有棱中,最长的棱的棱长为(

A.5B.C.D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修44:极坐标与参数方程

已知在平面直角坐标系xOyO为坐标原点曲线C (α为参数)在以平面直角坐标系的原点为极点x轴的正半轴为极轴取相同单位长度的极坐标系直线lρ.

()求曲线C的普通方程和直线l的直角坐标方程;

()曲线C上恰好存在三个不同的点到直线l的距离相等分别求出这三个点的极坐标

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“一带一路”近年来成为了百姓耳熟能详的热门词汇,对于旅游业来说,“一带一路”战略的提出,让“丝路之旅”超越了旅游产品、旅游线路的简单范畴,赋予了旅游促进跨区域融合的新理念. 而其带来的设施互通、经济合作、人员往来、文化交融更是将为相关区域旅游发展带来巨大的发展机遇.为此,旅游企业们积极拓展相关线路;各地旅游主管部门也在大力打造丝路特色旅游品牌和服务.某市旅游局为了解游客的情况,以便制定相应的策略. 在某月中随机抽取甲、乙两个景点10天的游客数,统计得到茎叶图如下:

(1)若将图中景点甲中的数据作为该景点较长一段时期内的样本数据,以每天游客人数频率作为概率.今从这段时期内任取4天,记其中游客数超过130人的天数为,求概率

(2)现从上图20天的数据中任取2天的数据(甲、乙两景点中各取1天),记其中游客数不低于125且不高于135人的天数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面分别是的中点.

(1)求三棱锥的体积;

(2)若异面直线所成的角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,…,是由)个整数,…,按任意次序排列而成的数列,数列满足.

1)当时,写出数列,使得.

2)证明:当为正偶数时,不存在满足)的数列.

3)若,…,,…,按从大到小的顺序排列而成的数列,写出),并用含的式子表示.

(参考:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知菱形中,相交于点,将沿折起,使顶点至点,在折起的过程中,下列结论正确的是( )

A.B.存在一个位置,使为等边三角形

C.不可能垂直D.直线与平面所成的角的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两动圆),把它们的公共点的轨迹记为曲线,若曲线轴的正半轴的交点为,且曲线上的相异两点满足:.

1)求曲线的轨迹方程;

2)证明直线恒经过一定点,并求此定点的坐标;

3)求面积的最大值.

查看答案和解析>>

同步练习册答案