【题目】(本小题满分14分)已知函数.
(Ⅰ)求函数的单调递增区间;
(Ⅱ)证明:当时,;
(Ⅲ)确定实数的所有可能取值,使得存在,当时,恒有.
科目:高中数学 来源: 题型:
【题目】为比较甲、乙两地某月11时的气温情况,随机选取该月中的5天中11时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:
①甲地该月11时的平均气温低于乙地该月11时的平均气温
②甲地该月11时的平均气温高于乙地该月11时的平均气温
③甲地该月11时的气温的标准差小于乙地该月11时的气温的标准差
④甲地该月11时的气温的标准差大于乙地该月11时的气温的标准差
其中根据茎叶图能得到的正确结论的编号为( )
A.①③
B.①④
C.②③
D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业有、两个岗位招聘大学毕业生,其中第一天收到这两个岗位投简历的大学生人数如下表:
岗位 | 岗位 | 总计 | |
女生 | 12 | 8 | 20 |
男生 | 24 | 56 | 80 |
总计 | 36 | 64 | 100 |
(1)根据以上数据判断是有的把握认为招聘的、两个岗位与性别有关?
(2)从投简历的女生中随机抽取两人,记其中投岗位的人数为,求的分布列和数学期望.
参考公式:,其中.
参考数据:
0.050 | 0.025 | 0.010 | |
3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面四边形ACBD(图①)中,△ABC与△ABD均为直角三角形且有公共斜边AB,设AB=2,∠BAD=30°,∠BAC=45°,将△ABC沿AB折起,构成如图②所示的三棱锥C′﹣ABC,且使 .
(Ⅰ)求证:平面C′AB⊥平面DAB;
(Ⅱ)求二面角A﹣C′D﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直线的参数方程式(是参数).以坐标原点为极点,轴的正半轴为极轴,且取相同的长度单位建立极坐标系,圆的极坐标方程为.
(1)求直线的普通方程与圆的直角坐标方程;
(2)设圆与直线交于、两点,若点的直角坐标为,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com