精英家教网 > 高中数学 > 题目详情
设Sn是公差为d(d≠0)的无穷等差数列{an}的前n项和,则“d<0”是“数列{Sn}有最大项”的(  )
分析:利用等差数列的求和公式表示出Sn,整理后,得到等差数列的Sn为关于n的二次函数,利用配方法,即可确定数列的最大项.根据d小于0,可得此函数图象为开口向下的抛物线,函数有最大值,从而利用二次函数求最值的方法即可得出Sn的最大值,即为{Sn}中的最大项;反之也然.
解答:解:由等差数列的求和公式得:Sn=na1+
n(n-1)
2
d,
整理得:Sn=0.5dn2+(a1-
1
2
d)n,
当d<0,
∴等差数列的Sn为二次函数,依题意是开口向下的抛物线,
∴Sn有最大值;
反之,当数列{Sn}有最大项时,则Sn为二次函数,且图象是开口向下的抛物线,从而d<0.
故选A.
点评:本题考查数列的应用,等差数列的求和公式,考查配方法,是一个最大值的问题,结合二次函数的性质来解题,通过解题后的反思,找准自己的问题,总结成功的经验,吸取失败的教训,增强解综合题的信心和勇气,提高分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•浙江)设Sn是公差为d(d≠0)的无穷等差数列{an}的前n项和,则下列命题错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数y=
x2-8x+20
+
x2+1
的最小值为5;
②若直线y=kx+1与曲线y=|x|有两个交点,则k的取值范围是-1≤k≤1;
③若直线m被两平行线l1:x-y+1=0与l2:x-y+3=0所截得的线段的长为2
2
,则m的倾斜角可以是15°或75°
④设Sn是公差为d(d≠0)的无穷等差数列{an}的前n项和,若对任意n∈N*,均有Sn>0,则数列{Sn}是递增数列
⑤设△ABC的内角A.B.C所对的边分别为a,b,c,若三边的长为连续的三个正整数,且A>B>C,3b=20acosA则sinA:sinB:sinC为6:5:4
其中所有正确命题的序号是
①③④⑤
①③④⑤

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设Sn是公差为d(d≠0)的无穷等差数列{an}的前n项和,则“d<0”是“数列{Sn}有最大项”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省淮北一中高三(上)第三次月考数学试卷(理科)(解析版) 题型:选择题

设Sn是公差为d(d≠0)的无穷等差数列{an}的前n项和,则下列命题错误的是( )
A.若d<0,则列数{Sn}有最大项
B.若数列{Sn}有最大项,则d<0
C.若数列{Sn}是递增数列,则对任意n∈N*,均有Sn>0
D.若对任意n∈N*,均有Sn>0,则数列{Sn}是递增数列

查看答案和解析>>

同步练习册答案