精英家教网 > 高中数学 > 题目详情

【题目】记表示中的最大值,如,已知函数.

1)求函数上的值域;

2)试探讨是否存在实数, 使得恒成立?若存在,求的取值范围;

若不存在,说明理由.

【答案】(1;(2.

【解析】试题分析:(1)根据题意,明确给定范围上的的表达式,然后求值域;(2)根据题意,明确给定范围上的的表达式,然后恒成立问题就转化为最值问题.

试题解析:(1)设,.............1

,得递增;令,得递减,.................2

,.......................3

.............4

故函数上的值域为...........................5

2时,

.................................................. 6

,对恒成立,则恒成立,

,则

,得递增;令,得递减.

....9

时,由(1)知,对恒成立,

恒成立,则恒成立,

恒成立,这显然不可能.

即当时,不满足恒成立,.........................11

故存在实数,使得恒成立,且的取值范围为.......12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】葫芦岛市某工厂党委为了研究手机对年轻职工工作和生活的影响情况做了一项调查:在厂内用简单随机抽样方法抽取了30名25岁至35岁的职工,对其“每十天累计看手机时间”(单位:小时)进行调查,得到茎叶图如下.所抽取的男职工“每十天累计看手机时间”的平均值和所抽取的女生 “每十天累计看手机时间”的中位数分别是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:


喜爱打篮球

不喜爱打篮球

合计

男生


5


女生

10



合计



50

已知在全班50人中随机抽取1人,抽到喜爱打篮球的学生的概率为

1)请将上表补充完整(不用写计算过程);

2)能否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由.

下面的临界值表供参考:


0.15

0.10

0.05

0.025

0.010

0.005

0.001


2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不等式-kx+1≤0的解集非空,则k的取值范围为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(为自然对数的底数,,(,),

.求上的最大值的表达式;

时,方程上恰有两个相异实根,求实根的取值范围;

,求使得图像恒在图像上方的最大正整数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,椭圆的左、右焦点分别为也是抛物线的焦点,点M在第一象限的交点,且.

1)求的方程;

2)平面上的点N满足,直线,且与交于A,B两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

1)求的值;

(2)判断函数的单调性,并用定义证明;

(3)当时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C对边的边长分别是a,b,c.已知c=2,C=.

(1)若△ABC的面积等于,求a,b;

(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=,其中a∈R.

(I)当a=1时,求曲线y=f(x)在原点处的切线方程;

(II)求f(x)的极值.

查看答案和解析>>

同步练习册答案