精英家教网 > 高中数学 > 题目详情

【题目】已知定义在R上的函数f(x)=|x+1|—|x-2|的最大值为a.

(1)求函数f(x)的值域;

(2)若函数f(x)的最大值为a;当 p,q,r是正实数,且满足p+q+r=a时,求证:p2+q2+r23。

【答案】(1);(2)见解析

【解析】

(1)利用绝对值三角不等式的性质可求;

(2)先求出的值,结合基本不等式可证.

(1)因为,所以f(x)的最大值等于3,所以a=3,值域为

(2)由(1)知p+q+r=3,又因为p,q,r是正实数,

∴(p+q+r)2=p2+q2+r2+2(pq+pr+qr)=9

又2pq+2pr+2qr≤2(p2+q2+r2)

当且仅当p=q=r时,等号成立.

因此3(p2+q2+r2)≥9从而p2+q2+r2≥3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 .

1)若的充分不必要条件,求实数的取值范围;

(2)若为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式组表示的平面区域为,若函数的图象上存在区域上的点,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,下列说法正确的是( )

(1)的极大值点 ;(2)函数有且只有1个零点;(3)存在正实数,使得恒成立 ;(4)对任意两个正实数,且,若,则

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥, 平面平面,.

1)求证:平面

2)求直线与平面所成角的正弦值;

3)在棱上是否存在点,使得平面?若存在, 的值;若不存在, 说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)若函数处取得极值,求实数的值;并求此时上的最大值;

()若函数不存在零点,求实数a的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列对任意满足,下面给出关于数列的四个命题:①可以是等差数列,②可以是等比数列;③可以既是等差又是等比数列;④可以既不是等差又不是等比数列;则上述命题中,正确的个数为(

A. 1个B. 2个C. 3个D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的通项公式为an=则数列{an}中的最大项为(  )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,

(1)求证:平面平面

(2)的中点,求证:平面

(3)与平面所成的角为求四棱锥的体积.

查看答案和解析>>

同步练习册答案