精英家教网 > 高中数学 > 题目详情

【题目】若函数fxc≠0),其图象的对称中心为(),现已知fx,数列{an}的通项公式为anf)(nN+),则此数列前2020项的和为_____.

【答案】

【解析】

由已知结论可得的对称中心为,即有,此数列前2020项的和按照正常顺序写一遍,再倒过来写,即运用数列的求和方法:倒序相加求和法,化简即可得到所求和.

∵函数fxc≠0),其图象的对称中心为(),

fx,其图象的对称中心为,即

∵数列{an}的通项公式为anf)(nN+),

∴此数列前2020项的和为:

S2020f+f+…f+f1),

S2020f+f+…+f+ f1),

两式相加,得:

2S2020[f+f]+[f+f]+…+2f10=﹣2×2019

故答案为:﹣2019.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,曲线C的参数方程是,(为参数).

(1)求直线被曲线C截得的弦长;

(2)从极点作曲线C的弦,求各弦中点轨迹的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面为矩形,平面平面,点在线段上,且平面.

1)求证:平面

2)若点是线段上靠近的三等分点,点在线段上,且平面,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】莆田市是福建省历史文化名城之一,也是旅游资源丰富的城市.“九头十八巷二十四景美如画.某文化传媒公司为了解莆田民众对当地风景民俗知识的了解情况,在全市进行网上问卷(满分100分)调查,民众参与度极高.该公司对得分数据进行统计拟合,认为服从正态分布.

1)从参与调查的民众中随机抽取200名作为幸运者,试估算其中得分在75分以上(含75分)的人数(四舍五入精确到1人);

2)在(1)的条件下,为感谢参与民众,该公司组织两种活动,得分在75分以上(含75分)的幸运者选择其中一种活动参与.活动如下:

活动一 参与一次抽奖.已知抽中价值200元的礼品的概率为,抽中价值420元的礼品的概率为

活动二 挑战一次闯关游戏.规则如下:游戏共有三关,闯关成功与否相互独立,挑战者依次闯关,第一关闯关失败者没有获得礼品,第二关起闯关失败者只能获得上一关的礼品,获得的礼品不累计,闯关结束.已知第一关通过的概率为,可获得价值300元的礼品;第二关通过的概率为,可获得价值800元的礼品;第三关通过的概率为,可获得价值1800元的礼品.

若参与活动的幸运者均选择礼品价值期望值较高的活动,该公司以该期望值为依据,需准备多少元的礼品?

附:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)分别写出直线的普通方程与曲线的直角坐标方程;

(Ⅱ)已知点,直线与曲线相交于两点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)是定义在R上的偶函数,且f(x+2)=f(2-x),当x∈[-2,0]时,f(x)=,则在区间(-2,6)上关于x的方程f(x)-log8(x+2)=0的解的个数为( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知椭圆C 经过点,设椭圆C的左顶点为A,右焦点为F,右准线于x轴交于点M,且F为线段AM的中点,

1)求椭圆的标准方程;

2)若过点A的直线l与椭圆C交于另一点PPx轴上方),直线PF与椭圆C相交于另一点Q,且直线lOQ垂直,求直线PQ的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知边长为2的正三角形ABE所在的平面与菱形ABCD所在的平面垂直,且,点FBC上一点,且

1)当时,证明:

2)是否存在一个常数k,使得三棱锥的体积等于四棱锥的体积的,若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为等差数列的前项和,且

1)求数列的通项公式;

2)若满足不等式的正整数恰有个,求正实数的取值范围.

查看答案和解析>>

同步练习册答案