精英家教网 > 高中数学 > 题目详情

如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点

(Ⅰ)证明:BC1//平面A1CD;
(Ⅱ)设AA1=AC=CB=2,AB=,求三棱锥C一A1DE的体积.

(Ⅰ)详见解析;(Ⅱ)三棱锥C一A1DE的体积

解析试题分析:(Ⅰ)证明:BC1//平面A1CD,证明线面平行,首先证明线线平行,可用三角形的中位线平行,也可用平行四边形的对边平行,注意到D,分别是AB,的中点,可考虑利用三角形的中位线平行,连结于点F,则F为中点,连结DF,则∥DF,从而可证;(Ⅱ)求三棱锥C一A1DE的体积.求体积,关键是找高,由已知=2,,可知三角形是等腰直角三角形,又因为是直三棱柱,则即为高,有平面几何知识可得是直角三角形,可求得面积,从而可得体积.
试题解析:(Ⅰ)连结于点F,则F为中点,又D是AB中点,连结DF,则∥DF
因为所以∥平面
(Ⅱ)因为是直三棱柱,所以,,由已知AC=CB,D为AB的中点,所以,又,于是.由=2,
, ,,E=3,
,,所以 (12分)

考点:线面平行的判定,几何体的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD是边长为2的正方形,直线l与平面ABCD平行,EFl上的两个不同点,且EAEDFBFC.E′和F′是平面ABCD内的两点,EE′和FF′都与平面ABCD垂直.

(1)证明:直线EF′垂直且平分线段AD
(2)若∠EAD=∠EAB=60 °,EF=2.求多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图在长方体中,,点的中点,点的中点.

(1)求长方体的体积;
(2)若,求异面直线所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知几何体的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.

(1)求异面直线所成角的余弦值;
(2)求二面角的正弦值;
(3)求此几何体的体积的大小

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是边长为的菱形,, 底面,,的中点,的中点.

(Ⅰ)求四棱锥的体积;
(Ⅱ)证明:直线平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示的几何体ABCDFE中,△ABC,△DFE都是等边三角形,且所在平面平行,四边形BCED是边长为2的正方形,且所在平面垂直于平面ABC.

(Ⅰ)求几何体ABCDFE的体积;
(Ⅱ)证明:平面ADE∥平面BCF;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形均为菱形,设相交于点,若,且.

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四面体中,,点分别是的中点.

(1)EF∥平面ACD;
(2)求证:平面⊥平面
(3)若平面⊥平面,且,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知简单几何体的三视图如图所示

求该几何体的体积和表面积。
附:    分别为上、下底面积

查看答案和解析>>

同步练习册答案