精英家教网 > 高中数学 > 题目详情

【题目】求和:Sn= + +…+ ,并用数学归纳法证明.

【答案】解:S1= ,S2= ,S3= 猜想:Sn=
①n=1时,S1成立;
②假设n=k时,猜想成立,即Sk=
则n=k+1时,Sk+1= + =
∴n=k+1时猜想也成立
根据①②可知猜想对任何n∈N*都成立
【解析】利用条件计算S1 , S2 , S3 , 由此推测Sn的计算公式;利用归纳法进行证明,检验n=1时等式成立,假设n=k时命题成立,证明当n=k+1时命题也成立.
【考点精析】根据题目的已知条件,利用数列的前n项和和数学归纳法的定义的相关知识可以得到问题的答案,需要掌握数列{an}的前n项和sn与通项an的关系数学归纳法是证明关于正整数n的命题的一种方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f ( x)=ax3+bx2+cx+d 的图象如图所示,则 的取值范围是(
A.(﹣ ?)
B.(﹣ ,1)
C.(﹣
D.(﹣ ,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】按下列程序框图运算,则输出的结果是(
A.42
B.128
C.170
D.682

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若0<x< ,则2x与3sin x的大小关系(
A.2x>3sin x
B.2x<3sin x
C.2x=3sin x
D.与x的取值有关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)已知点,曲线在点 处的切线与直线交于点,求为坐标原点)的面积最小时的值,并求出面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱ABC﹣A1B1C1的直观图和三视图如图所示,E是棱CC1上一点.
(1)若CE=2EC1 , 求三棱锥E﹣ACB1的体积.
(2)若E是CC1的中点,求C到平面AEB1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣2x2﹣4x.
(1)求函数y=f(x)的单调区间;
(2)求函数f(x)在区间[﹣1,4]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知位置向量 =(log2(m2+3m﹣8),log2(2m﹣2)), =(1,0),若以OA、OB为邻边的平行四边形OACB的顶点C在函数y= x的图象上,则实数m=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】盒子中有大小相同的球6个,其中标号为1的球2个,标号为2的球3个.标号为3的球1个,第一次从盒子中任取1个球,放回后第二次再任取1个球 (假设取到每个球的可能性都相同).记第一次与第二次取到球的标号之和为ξ.
(1)求随机变量ξ的分布列:
(2)求随机变量ξ的期望Eξ.

查看答案和解析>>

同步练习册答案