精英家教网 > 高中数学 > 题目详情

解答题

已知函数f(x)=x2-1(x≥1)的曲线为C1,曲线C2与C1关于直线y=x对称.

(1)求曲线C2的方程y=g(x);

(2)设函数y=g(x)的定义域为M,x1,x2∈M,且x1≠x2,求证:|g(x1)-g(x2)|<|x1-x2|:

(3)设A、B为曲线C2上任意不同两点,证明直线AB与直线y=x必相交.

答案:
解析:

  (1)曲线C1和C2关于直线y=x对称,则y(x)为f(x)的反函数.

  由y=x2-1(x≥1)得x=

  ∴曲线C2的方程g(x)=(x≥0).

  (2)设x1>x2∈M,且x1≠x2

  则x1-x2≠0且x1≥0,x2≥0.

  ∴|g(x1)-g(x2)|=||=<|x1-x2|.

  (3)证明:设A、B为曲线C2上任意不同两点(x1,y1),(x2,y2).

  x1,x2∈M,且x1≠x2,由(2)知

  |kAB|==||<1.

  ∴直线AB的斜率|kAB|≠±1.

  而直线y=x的斜率为1.

  ∴直线AB与直线y=x必相交.


练习册系列答案
相关习题

科目:高中数学 来源:成功之路·突破重点线·数学(学生用书) 题型:044

已知函数f(x)=m(x+)的图象与函数h(x)=(x+)+2的图象关于点A(0,1)对称.

(1)求m的值;

(2)若g(x)=f(x)+在区间(0,2]上为减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2004全国各省市高考模拟试题汇编(天利38套)·数学 题型:044

已知函数f(x)的图像与函数h(x)=x++2的图像关于点A(0,1)对称.

(1)求f(x)的解析式;

(2)(文)若g(x)=f(x)·x+ax,且g(x)在区间(0,2]上为减函数,求实数a的取值范围;

(理)若g(x)=f(x)+,且g(x)在区间(0,2]上为减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:成功之路·突破重点线·数学(学生用书) 题型:044

已知函数f(x)=

(1)求f(x)的定义域;

(2)用定义判断f(x)的奇偶性;

(3)在[-π,π]上作出f(x)的图象;

(4)指出f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

解答题

已知函数f(x)的定义域是R,对任意xy∈R,都有f(xy)=f(x)+f(y),且x>0时,f(x)<0f(1)=2,求f(x)在[33]上的最大值和最小值.

 

查看答案和解析>>

科目:高中数学 来源:中学教材标准学案 数学 高二上册 题型:047

解答题

已知函数f(x)=x3-x+c定义在区间[0,1]上,x1、x2∈[0,1]且x1≠x2

求证:(1)f(0)=f(1);

(2)|f(x2)-f(x1)|<2|x2-x1|;

(3)|f(x2)-f(x1)|<1.

查看答案和解析>>

同步练习册答案