精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足,则①数列单调递增;②;③对于给定的实数,若对任意的成立,必有.上述三个结论中正确个数是(

A.1B.2C.3D.0

【答案】A

【解析】

①利用递增数列定义说明;②将不等式转化为的形式,利用不等式的基本性质,可得结果;③还将不等式转化为的形式,分类讨论的取值范围,利用累乘法进行推导,可得结果.

①∵

若数列单调递增,则,那么必有,即恒有

∴①错误;

②∵

∴②正确;

③∵

(),则,即

∴连续相乘得

对于给定的实数对任意的不一定成立;

(),则,即

∴连续相乘得

对于给定的实数对任意的成立;

() ,当时,对于给定的实数

综上所述对于给定的实数,若对任意的成立,则有.

∴③错误.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB底面ABCDBAP=90°AB=AC=PA=2EF分别为BCAD的中点,点M在线段PD上.

(1)求证:EF⊥平面PAC

(2)如果直线ME与平面PBC所成的角和直线ME与平

ABCD所成的角相等,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调区间;

(2)若对于任意 ,恒有成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数xy满足,则的最大值为________的最小值为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校对甲、乙两个班级的同学进行了体能测验,成绩统计如下(每班50人):

(1)成绩不低于80分记为“优秀”.请填写下面的列联表,并判断是否有的把握认为成绩优秀与所在教学班级有关?

(2)从两个班级的成绩在的所有学生中任选2人,其中,甲班被选出的学生数记为,求的分布列与数学期望.

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的长轴长为,且经过点.

(1)求椭圆的标准方程;

(2)过椭圆右焦点作两条互相垂直的弦,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据国家环保部最新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.524小时平均浓度不得超过75微克/立方米。某城市环保部分随机抽取的一居民区过去20PM2.524小时平均浓度的监测数据,数据统计如下:

组别

PM2.5平均浓度

频数

频率

第一组

(0,25]

3

0.15

第二组

(25,50]

12

0.6

第三组

(50,75]

3

0.15

第四组

(75,100]

2

0.1

(Ⅰ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;

(II)求样本平均数,并根据样本估计总计的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过抛物线上一点作抛物线的切线轴于点.

(1)判断的形状;

(2) 两点在抛物线上,点满足,若抛物线上存在异于的点,使得经过三点的圆与抛物线在点处的有相同的切线,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱的侧棱垂直于底面, ,点分别是的中点.

(1)证明:平面

(2)设,当为何值时,平面,试证明你的结论.

查看答案和解析>>

同步练习册答案