精英家教网 > 高中数学 > 题目详情

【题目】如图所示,以原点为圆心的两个同心圆,其中,大圆的半径为 ,小圆的半径为,点为大圆上一动点,连接,与小圆交于点,过点轴的垂线,垂足为,过点作直线的垂线,垂足为,点,记.

(1)求点的坐标(用含有的式子表示),并写出点的轨迹方程,指出点的轨迹是什么曲线;

(2)设点的轨迹为,点分别是曲线上的两个动点,且,求的值.

【答案】(1)点的轨迹方程为,点的轨迹是一个中心为原点,焦点在轴上的椭圆.(2)

【解析】试题分析:(1)根据题意可根据极坐标定义得化为普通方程即得答案2)可设 其中,由E,F在椭圆上,代入可得,再将化简表达式即可求解

试题解析:

解:

(1),则点的轨迹方程为

的轨迹是一个中心为原点,焦点在轴上的椭圆.

(2)设,其中

因为点在椭圆上,所以,所以

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二次函数 .

(1)若,写出函数的单调增区间和减区间;

2)若,求函数的最大值和最小值;

(3)若函数在上是单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,三条边所对的角分别为A、B,C,向量=(),=(),且满足=

(1)求角C的大小;

(2)若sinA,sinC,sinB成等比数列,且 =﹣8,求边的值并求△ABC外接圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C的中心在原点,其一个焦点与抛物线y2=4x的焦点相同,又椭圆C上有一点M(2,1),直线l平行于OM且与椭圆C交于A,B两点,连接MA,MB.

(1)求椭圆C的方程;

(2)当MA,MB与x轴所构成的三角形是以x轴上所在线段为底边的等腰三角形时,求直线l在y轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数fx)的图象如图所示,曲线BCD为抛物线的一部分.

(Ⅰ)求fx)解析式;

(Ⅱ)若fx)=1,求x的值;

(Ⅲ)若fx)>f(2-x),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:

喜欢游泳

不喜欢游泳

合计

男生

10

女生

20

合计

已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为

(1)请将上述列联表补充完整;

(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;

(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率.

下面的临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知函数.

(1)若函数区间单调,求取值范围;

(2)若函数无零点,求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知极点直角坐标系的原点重合,极轴与的正半轴重合,圆极坐标方程是直线参数方程是参数).

(1)直线的交点,一动点,求最大值

(2)若直线得的弦长值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线处的切线的方程为,求实数的值;

(2)设,若对任意两个不等的正数,都有恒成立,求实数的取值范围;

(3)若在上存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案