【题目】某数学教师对所任教的两个班级各抽取20名学生进行测试,分数分布如表:
分数区间 | 甲班频率 | 乙班频率 |
[0,30) | 0.1 | 0.2 |
[30,60) | 0.2 | 0.2 |
[60,90) | 0.3 | 0.3 |
[90,120) | 0.2 | 0.2 |
[120,150) | 0.2 | 0.1 |
(Ⅰ)若成绩120分以上(含120分)为优秀,求从乙班参加测试的90分以上(含90分)的同学中,随机任取2名同学,恰有1人为优秀的概率;
(Ⅱ)根据以上数据完成下面的2×2列联表:在犯错概率小于0.1的前提下,你是否有足够的把握认为学生的数学成绩是否优秀与班级有关系?
优秀 | 不优秀 | 总计 | |
甲班 | |||
乙班 | |||
总计 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
,其中n=a+b+c+d.
【答案】解:(I)乙班参加测试的90(分)以上的同学有20×(0.2+0.1)=6人,记为A、B、C、D、E、F;其中成绩优秀120分以上有20×0.1=2人,记为A、B;
从这6名学生随机抽取两名的基本事件有:
{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},
{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F}共15个
设事件G表示恰有一位学生成绩优秀,符合要求的事件有{A,C},{A,D},
{A,E},{A,F},{B,C},{B,D},{B,E},{B,F}共8个;
所以 ;
(II)计算甲班优秀的人数为20×0.2=4,不优秀的人数为16,乙班优秀人数为2,不优秀的人数为18,
填写列联表,如下;
优秀 | 不优秀 | 总计 | |
甲班 | 4 | 16 | 20 |
乙班 | 2 | 18 | 20 |
总计 | 6 | 34 | 40 |
计算K2= ≈0.7843<2.706;
所以在犯错概率小于0.1的前提下,没有足够的把握说明学生的数学成绩是否优秀与班级有关系
【解析】(I)计算乙班参加测试的90(分)以上的同学人数,以及120分以人数,利用列举法求出对应事件数,求出对应的概率值;(II)计算甲、乙两班优秀与不优秀的人数,填写列联表,计算K2 , 对照数表得出概率结论.
科目:高中数学 来源: 题型:
【题目】如图,在直四棱柱ABCD﹣A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.
(1)求证:D1C⊥AC1;
(2)设E是DC上一点,试确定E的位置,使D1E∥平面A1BD,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下四个命题中:
①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为40.
②线性回归直线方程 恒过样本中心( , ),且至少过一个样本点;
③在某项测量中,测量结果ξ服从正态分布N(2,σ2)(σ>0).若ξ在(﹣∞,1)内取值的概率为0.1,则ξ在(2,3)内取值的概率为0.4;
其中真命题的个数为( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为迎接中国共产党的十九大的到来,某校举办了“祖国,你好”的诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的7名学生中选派4名学生参加,要求甲、乙、丙这3名同学中至少有1人参加,且当这3名同学都参加时,甲和乙的朗诵顺序不能相邻,那么选派的4名学生不同的朗诵顺序的种数为( )
A. 720 B. 768 C. 810 D. 816
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为,直线与抛物线交于两点.
(Ⅰ)若直线过焦点,且与圆交于(其中在轴同侧),求证: 是定值;
(Ⅱ)设抛物线在和点的切线交于点,试问: 轴上是否存在点,使得为菱形?若存在,请说明理由并求此时直线的斜率和点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2﹣2ax+b(a>0)在区间[﹣1,4]上有最大值10和最小值1.设g(x)= .
(1)求a、b的值;
(2)证明:函数g(x)在[ ,+∞)上是增函数;
(3)若不等式g(2x)﹣k2x≥0在x∈[﹣1,1]上有解,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数y=f(x)的定义域是[0,2],则函数g(x)= 的定义域是( )
A.[0,1)∪(1,2]
B.[0,1)∪(1,4]
C.[0,1)
D.(1,4]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,左、右顶点分别为为直径的圆O过椭圆E的上顶点D,直线DB与圆O相交得到的弦长为.设点,连接PA交椭圆于点C,坐标原点为O.
(I)求椭圆E的方程;
(II)若三角形ABC的面积不大于四边形OBPC的面积,求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com