【题目】用一个平面去截直立放置的圆柱,得圆柱的下半部分如图,其中为截面的最低点,为截面的最高点,为线段中点,为截面边界上任意一点,作垂直圆柱底面于点,垂直圆柱于底面于点,垂直圆柱于底面于点,圆柱底面圆心为。已知为底面直径,在以为直径的圆周上,垂直底面,,,,以为原点,为轴正方向,圆柱底面为平面,为轴正方向建立空间直角坐标系,设点。
(1)求点的坐标,并求出与之间满足的关系式;
(2)三视图是解决立体几何问题时的有效工具,将圆柱下半部分在平面上的投影作为主视图,在平面上的投影作为俯视图;在方框中作出主视图,并说明理由;再求出左视图所围区域的面积;
(3)判断截面的边界是什么曲线,并证明.再指出截面的面积(不需要证明)
【答案】(1);(2)主视图见解析; (3)椭圆,证明见解析;
【解析】
(1)根据垂直圆柱于底面于点,即可得的坐标;由于位于底面的圆周上,结合圆的方程即可得与之间满足的关系.
(2)根据几何体,可得主视图;画出左视图,即可求得左视图围成图形的面积.
(3)根据平面截圆柱形成截面性质可知所得截面为椭圆.根据椭圆的面积求法即可得截面面积.
(1)以为原点,为轴正方向,圆柱底面为平面,为轴正方向建立空间直角坐标系
因为垂直圆柱于底面于点,且
所以
因为底面是以为圆心的圆,即位于圆上,圆心为,半径为1
所以与之间满足的关系为
(2)主视图分别为在平面上的投影,所以主视图如下所示:
左视图如下图所示:
该部分的面积为
(3)将圆柱补充完整,并作两个内切球,分别切截面于.过点作与两个内切球分别交于
由切线长定理可知,
所以
由于为定值,所以由椭圆定义可知,动点的轨迹为椭圆,即截面的边界是椭圆
,
所以截面面积为
科目:高中数学 来源: 题型:
【题目】如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E,F分别是棱AA′,CC′的中点,过直线E,F的平面分别与棱BB′、DD′交于M,N,设BM=x,x∈[0,1],给出以下四个命题:
①平面MENF⊥平面BDD′B′;
②当且仅当x=时,四边形MENF的面积最小;
③四边形MENF周长L=f(x),x∈[0,1]是单调函数;
④四棱锥C′﹣MENF的体积V=h(x)为常函数;
以上命题中假命题的序号为( )
A. ①④B. ②C. ③D. ③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点, 轴为极轴建立极坐标系,曲线的极坐标为.
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)若曲线和曲线有三个公共点,求以这三个公共点为顶点的三角形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若在区间上存在不相等的实数,使成立,求的取值范围;
(Ⅲ)若函数有两个不同的极值点,,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南某地区年10年间梅雨季节的降雨量单位:的频率分布直方图,试用样本频率估计总体概率,解答下列问题:
假设每年的梅雨季节天气相互独立,求该地区未来三年里至少有两年梅雨季节的降雨量超过350mm的概率.
老李在该地区承包了20亩土地种植杨梅,他过去种植的甲品种杨梅,平均每年的总利润为28万元而乙品种杨梅的亩产量亩与降雨量之间的关系如下面统计表所示,又知乙品种杨梅的单位利润为元,请你帮助老李分析,他来年应该种植哪个品种的杨梅可以使总利润万元的期望更大?并说明理由.
降雨量 | ||||
亩产量 | 500 | 700 | 600 | 400 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公园准备在一圆形水池里设置两个观景喷泉,观景喷泉的示意图如图所示,两点为喷泉,圆心为的中点,其中米,半径米,市民可位于水池边缘任意一点处观赏.
(1)若当时,,求此时的值;
(2)设,且.
(i)试将表示为的函数,并求出的取值范围;
(ii)若同时要求市民在水池边缘任意一点处观赏喷泉时,观赏角度的最大值不小于,试求两处喷泉间距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在数列 中,已知 ,为常数.
(1)证明: 成等差数列;
(2)设 ,求数列的前n项和 ;
(3)当时,数列 中是否存在不同的三项成等比数列,
且也成等比数列?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】朱世杰是历史上最伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问中有如下问题:今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人.”其大意为“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天派出的人数比前一天多7人.”在该问题中的1864人全部派遣到位需要的天数为( )
A. 9B. 16C. 18D. 20
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学2018年的高考考生人数是2015年高考考生人数的倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:
则下列结论正确的是
A. 与2015年相比,2018年一本达线人数减少
B. 与2015年相比,2018年二本达线人数增加了倍
C. 2015年与2018年艺体达线人数相同
D. 与2015年相比,2018年不上线的人数有所增加
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com