精英家教网 > 高中数学 > 题目详情

【题目】已知正项数列{an},{bn}满足a1=3,a2=6,{bn}是等差数列,且对任意正整数n,都有 成等比数列.
(1)求数列{bn}的通项公式;
(2)设 ,试比较2Sn 的大小.

【答案】
(1)解:∵正项数列{an},{bn}满足对任意正整数n,都有 成等比数列,

∴an=bnbn+1

∵a1=3,a2=6,∴b1b2=3,b2b3=6

∵{bn}是等差数列,∴b1+b3=2b2,∴b1= ,b2=

∴bn=


(2)解:an=bnbn+1= ,则 =2(

∴Sn=2[( )+( )+…+( )]=1﹣

∴2Sn=2﹣

=2﹣

∴2Sn﹣( )=

∴当n=1,2时,2Sn ;当n≥3时,2Sn


【解析】(1)利用正项数列{an},{bn}满足对任意正整数n,都有 成等比数列,可得an=bnbn+1 , 结合{bn}是等差数列,可求数列的公差,从而可求数列{bn}的通项公式;(2)确定数列{an}的通项,利用裂项法求和,再作出比较,可得结论.
【考点精析】认真审题,首先需要了解等差数列的通项公式(及其变式)(通项公式:),还要掌握等比数列的通项公式(及其变式)(通项公式:)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】求函数f(x)=xlnx的定义域及单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图多面体 两两垂直

.

() 若点在线段求证: 平面

()求直线与平面所成的角的正弦值

()求锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(an , 2n), =(2n+1 , ﹣an+1),n∈N* , 向量 垂直,且a1=1
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=log2an+1,求数列{anbn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的一个极值点.

(1)若的唯一极值点,求实数的取值范围;

(2)讨论的单调性;

(3)若存在正数,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国神舟十一号载人飞船在酒泉卫星发射中心成功发射,引起全国轰动.开学后,某校高二年级班主任对该班进行了一次调查,发现全班60名同学中,对此事关注的占,他们在本学期期末考试中的物理成绩(满分100分)如下面的频率分布直方图:

(1)求“对此事关注”的同学的物理期末平均分(以各区间的中点代表该区间的均值).

(2)若物理成绩不低于80分的为优秀,请以是否优秀为分类变量,

①补充下面的列联表:

物理成绩优秀

物理成绩不优秀

合计

对此事关注

对此事不关注

合计

②是否有以上的把握认为“对此事是否关注”与物理期末成绩是否优秀有关系?

参考公式: ,其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=1﹣ (x∈R),
(1)求反函数f1(x);
(2)解不等式f1(x)>log2(1+x)+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,求函数 的极小值;

(2)若函数上为增函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=sin(2x+ )cos(x﹣ )+cos(2x+ )sin( ﹣x)的图象的一条对称轴方程是(
A.x=
B.x=
C.x=π
D.x=

查看答案和解析>>

同步练习册答案