精英家教网 > 高中数学 > 题目详情
已知数列{an}满足:a1=3,an=2an-1+2n-1(n∈N*,n≥2),且存在实数λ使得{
an2n
}
为等差数列,则{an}的通项公式是an=
n•2n+1
n•2n+1
分析:先假设存在一个实数λ符合题意,得到
an
2n
-
an-1
2n-1
必为与n无关的常数,整理
an
2n
-
an-1
2n-1
即可求出实数λ,进而求出数列{an}的通项公式.
解答:解:假设存在一个实数λ符合题意,则
an
2n
-
an-1
2n-1
必为与n无关的常数
an
2n
-
an-1
2n-1
=
an-2an-1
2n
=
2n-1-λ
2n
=1-
1+λ
2n

要使
an
2n
-
an-1
2n-1
是与n无关的常数,则
1+λ
2n
=0
,得λ=-1
故存在一个实数λ=-1,使得数列{
an
2n
}
为等差数列
由①知数列{
an
2n
}
的公差d=1,
an-1 
2n
=
a1-1
21
+(n-1)•1=n.
得an=n•2n+1
故答案为:n•2n+1.
点评:本题主要考查数列递推关系式的应用以及等差关系的确定.解决问题的关键在于由数列{
an
2n
}
为等差数列,得到
an
2n
-
an-1
2n-1
必为与n无关的常数,进而求出对应实数λ的值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案