精英家教网 > 高中数学 > 题目详情

【题目】数据的收集和整理在当今社会起到了举足轻重的作用,它用统计的方法来帮助人们分析以往的行为习惯,进而指导人们接下来的行动.

某支足球队的主教练打算从预备球员甲、乙两人中选一人为正式球员,他收集到了甲、乙两名球员近期5场比赛的传球成功次数,如下表:

场次

第一场

第二场

第三场

第四场

第五场

28

33

36

38

45

39

31

43

39

33

1)根据这两名球员近期5场比赛的传球成功次数,完成茎叶图(茎表示十位,叶表示个位);分别在平面直角坐标系中画出两名球员的传球成功次数的散点图;

2)求出甲、乙两名球员近期5场比赛的传球成功次数的平均值和方差;

3)主教练根据球员每场比赛的传球成功次数分析出球员在场上的积极程度和技术水平,同时根据多场比赛的数据也可以分析出球员的状态和潜力.你认为主教练应选哪位球员?并说明理由.

【答案】1见解析;(2;(3)见解析.

【解析】

1)根据两名球员近期5场比赛的传球成功次数,将样本数据有条理地列出来即可完成茎叶图,进而画出散点图.

2)利用平均数公式,方差公式即可求解.

3)由(2)可知,,且,说明乙在场上的积极程度和技术水平高于甲,且比较稳定,可知选择乙比较好.

解:(1)茎叶图如图

散点图如图:

2

3)选乙比较好,理由如下:由(2)可知,,且,说明乙在场上的积极程度和技术水平高于甲,且比较稳定,所以选择乙比较好.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若存在极值点1,求的值;

(2)若存在两个不同的零点,求证: 为自然对数的底数, ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点到直线的距离为,过点的直线交于两点.

1)求抛物线的准线方程;

2)设直线的斜率为,直线的斜率为,若,且的交点在抛物线上,求直线的斜率和点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中,,且的最小值为,则________,若P为边AB上任意一点,则的最小值是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下四个命题:

①设是空间中的三条直线,若,,则.

②在面积为的边上任取一点,则的面积大于的概率为.

③已知一个回归直线方程为,则.

④数列为等差数列的充要条件是其通项公式为的一次函数.

其中正确命题的充号为________.(把所有正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C分别是其左、右焦点,过的直线l与椭圆C交于AB两点,且椭圆C的离心率为的内切圆面积为.

I)求椭圆C的方程;

II)若时,求直线l的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,三个内角ABC所对的边分别为abc.

.

1)若,求角C的大小.

2)若AC边上的中线BM的长为2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线C的极坐标方程为.以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为 (t为参数)

(1)若,求曲线C的直角坐标方程以及直线l的极坐标方程;

(2)设点,曲线C与直线 交于A、B两点,求的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设首项为a1的正项数列{an}的前n项和为Snq为非零常数,已知对任意正整数nmSn+mSm+qmSn总成立.

1)求证:数列{an}是等比数列;

2)若不等的正整数mkh成等差数列,试比较ammahhak2k的大小;

3)若不等的正整数mkh成等比数列,试比较的大小.

查看答案和解析>>

同步练习册答案