精英家教网 > 高中数学 > 题目详情

【题目】已知函数a0.

1)求fx)的单调增区间;

2)当x[0π]时,fx)值域为[34],求ab的值.

【答案】1[]kZ;(2

【解析】

1)降次化简,结合三角函数的图象及性质即可求出fx)的单调增区间;

2)当x[0π]时,求出fx)值域,即可得ab的值.

1)函数a0

化简可得:fx=asinx+acosx+b+a= a sinx++a+b.

kZ.

可得:x.

fx)的单调增区间为[]kZ.

2)当x[0π]时,

可得:[].

∴当x+时,函数fx)取得最大值为.

∴当x+时,函数fx)取得最小值为.

由题意,可得:

解得:.

故得当x[0π]时,fx)值域为[34],此时a的值为b的值为3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,AB为椭圆的左、右顶点,直线过椭圆C的右焦点F且交椭圆于PQ两点.连结并延长交直线于点M.

1)若直线的斜率为,求直线的方程;

2)求证:AQM三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为两个随机事件,给出以下命题:(1)若为互斥事件,且,则;(2)若,则为相互独立事件;(3)若,则为相互独立事件;(4)若,则为相互独立事件;(5)若,则为相互独立事件;其中正确命题的个数为( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的一个焦点与抛物线的焦点重合,且离心率为.

1)求椭圆的标准方程;

2)过焦点的直线与抛物线交于两点,与椭圆交于两点,满足,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AB两点的坐标分别为(﹣10),(10.条件甲:ABC三点构成以∠C为钝角的三角形;条件乙:点C的坐标是方程x2+2y2=1y≠0)的解,则甲是乙的(  )

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国古代数学家刘徽用圆内接正多边形的面积去逼近圆的面积求圆周率,他从单位圆内接正六边形算起,令边数一倍一倍地增加,即122448192,逐个算出正六边形,正十二边形,正二十四边形,,正一百九十二边形,的面积,这些数值逐步地逼近圆面积,刘徽算到了正一百九十二边形,这时候的近似值是3.141024,刘徽称这个方法为“割圆术”,并且把“割圆术”的特点概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽这种想法的可贵之处在于用已知的、可求的来逼近未知的、要求的,用有限来逼近无穷,这种思想极其重要,对后世产生了巨大影响.按照上面“割圆术”,用正二十四边形来估算圆周率,则的近似值是( )(精确到.(参考数据

A.3.14B.3.11C.3.10D.3.05

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某中学学生对《中华人民共和国交通安全法》的了解情况,调查部门在该校进行了一次问卷调查(共12道题),从该校学生中随机抽取40人,统计了每人答对的题数,将统计结果分成六组,得到如下频率分布直方图.

1)若答对一题得10分,未答对不得分,估计这40人的成绩的平均分(同一组中的数据用该组区间的中点值作代表);

2)若从答对题数在内的学生中随机抽取2人,求恰有1人答对题数在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设中心在原点O焦点在x轴上的椭圆C过点FC的右焦点,⊙F的方程为

1)求C的方程;

2)若直线与⊙O相切,与⊙F交于MN两点,与C交于PQ两点,其中MP在第一象限,记⊙O的面积为,求取最大值时,直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆与直线相切于点,与正半轴交于点,与直线在第一象限的交点为.为圆上任一点,且满足,以为坐标的动点的轨迹记为曲线

1)求圆的方程及曲线的方程;

2)若两条直线分别交曲线于点,求四边形面积的最大值,并求此时的的值.

3)根据曲线的方程,研究曲线的对称性,并证明曲线为椭圆.

查看答案和解析>>

同步练习册答案