精英家教网 > 高中数学 > 题目详情
19.函数f(x)=$\left\{\begin{array}{l}{{3}^{x-2}(x<2)}\\{lo{g}_{3}({x}^{2}-1)(x≥2)}\end{array}\right.$,若f(a)=1,则a的值是(  )
A.2B.1C.1或2D.1或-2

分析 当a≥2时,f(a)=$lo{g}_{3}({a}^{2}-1)=1$;当a<2时,f(a)=3a-2=1,由此能求出结果.

解答 解:∵f(x)=$\left\{\begin{array}{l}{{3}^{x-2}(x<2)}\\{lo{g}_{3}({x}^{2}-1)(x≥2)}\end{array}\right.$,f(a)=1,
∴当a≥2时,f(a)=$lo{g}_{3}({a}^{2}-1)=1$,解得a=2或a=-2(舍);
当a<2时,f(a)=3a-2=1,解得a=1(舍).
故选:A.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若某圆锥的母线长为2,侧面展开图为一个半圆,则该圆锥的表面积为3π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=2$\sqrt{3}$sin(2ωx+$\frac{π}{3}$)-4cos2ωx+3(0<ω<2),且y=f(x)的图象的一条对称轴为x=$\frac{π}{6}$.
(1)求ω的值并求f(x)的最小值;
(2)△ABC中,a,b,c分别为△ABC的内角A,B,C的对边,且a=1,S△ABC=$\frac{\sqrt{3}}{4}$,f(A)=2,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为X,则E(X)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.用数学归纳法证明:1+3+5+…+(2n-1)=n2(n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=5,|$\overrightarrow{b}$|=3,$\overrightarrow{a}$•$\overrightarrow{b}$=-3,则$\overrightarrow{a}$在$\overrightarrow{b}$的方向上的投影是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=mlnx+(4-2m)x+$\frac{1}{x}$(m∈R).
(1)当m=2时,求函数f(x)的极值;
(2)设t,s∈[1,3],不等式|f(t)-f(s)|<(a+ln3)(2-m)-2ln3对任意的m∈(4,6)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.甲,乙,丙,丁4名学生按任意次序站成一排,则事件“甲站在两端”的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知m>0,n>0,向量$\overrightarrow{a}$=(m,1,-3)与$\overrightarrow{b}$=(1,n,2)垂直,则mn的最大值为9.

查看答案和解析>>

同步练习册答案