精英家教网 > 高中数学 > 题目详情
4.如图(1),在Rt△ABC中,∠C=90°,BC=2,AC=4,点D,E分别是AC,AB的中点,将△ADE沿DE折起到△A1DE的位置,使A1D⊥DC如图(2)所示,M为A1D的中点,求CM与面A1EB所成角的正弦值.

分析 以D为原点,DA为x轴,DE为y轴,DA1为z轴,建立空间直角坐标系,利用向量法能求出CM与面A1EB所成角的正弦值.

解答 解:如图(1),在Rt△ABC中,∠C=90°,BC=2,AC=4,点D,E分别是AC,AB的中点,
∴AD=CD=2,DE=1,AD⊥DE,CD⊥DE,
将△ADE沿DE折起到△A1DE的位置,使A1D⊥DC如图(2)所示,
M为A1D的中点,
∴DC、DE、DA两两垂直,DE=1,
以D为原点,DA为x轴,DE为y轴,DA1为z轴,建立空间直角坐标系,
C(2,0,0),M(0,0,1),A1(0,0,2),
E(0,1,0),B(2,2,0),
$\overrightarrow{CM}$=(-2,0,1),$\overrightarrow{{A}_{1}E}$=(0,1,-2),$\overrightarrow{{A}_{1}B}$=(2,2,-2),
设平面A1BE的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{A}_{1}E}=y-2z=0}\\{\overrightarrow{n}•\overrightarrow{{A}_{1}B}=2x+2y-2z=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=(-1,2,1),
设CM与面A1EB所成角为θ,
则sinθ=|cos<$\overrightarrow{CM},\overrightarrow{n}$>|=|$\frac{\overrightarrow{CM}•\overrightarrow{n}}{|\overrightarrow{CM}|•|\overrightarrow{n}|}$|=|$\frac{2+1}{\sqrt{6}•\sqrt{5}}$|=$\frac{\sqrt{30}}{10}$.
∴CM与面A1EB所成角的正弦值为$\frac{{\sqrt{30}}}{10}$.

点评 本题考查线面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在△ABC中,a、b、c分别为内角A、B、C的对边,且有(2c-a)cosB=bcosA.
(1)求角B的值;
(2)若△ABC的面积为10$\sqrt{3}$,b=7,求a+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在圆锥PO中,已知PO=$\sqrt{2}$,圆O的直径AB=2,C是弧AB的中点,D为AC的中点.
(1)求异面直线PD和BC所成的角
(2)求直线OC和平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知在等差数列{an}中,a1=-1,公差d=2,an-1=15,则n的值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图1,在直角梯形ABCD中,AD∥BC,AD⊥AB,AB=BC=$\frac{1}{2}$AD,E是AD的中点,O是AC与BE的交点,将△ABE沿BE折起到△A1BE的位置,如图2,
(1)证明:平面A1DC⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求直线CB与平面A1BE所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.给出下列四个命题,其中正确命题的序号是(  )
①已知f(x)=x2+bx+c是偶函数,则b=0
②若函数f(x)的值域为[0,2],则函数f(2x)的值域为[0,2]
③若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
④已知集合P={a,b},Q={-1,0,1}则映射f:P→Q中满足f(b)=0的映射共有3个.
⑤如果二次函数y=3x2+2(a-1)x+b在区间(-∞,1]上是减函数,那么a的取值范围是a≤-2.
A.①②⑤B.①②④⑤C.①②③⑤D.①③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,在正三棱柱ABC-A1B1C1中,侧棱长为2$\sqrt{2}$,底面三角形的边长为2,则BC1与侧面ACC1A1所成角的大小为30°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,G是△OAB的重心,P,Q分别是边OA,OB上的动点(P点可以和A点重合,Q点可以与B点重合),且P,G,Q三点共线.
(1)设$\overrightarrow{PG}=λ\overrightarrow{PQ}$,将$\overrightarrow{OG}$用$λ,\overrightarrow{OP},\overrightarrow{OQ}$表示;
(2)若△OAB为正三角形,且边长|AB|=a,设|PG|=x,|QG|=y,求$\frac{1}{x^2}+\frac{1}{y^2}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线3x-2y-6=0的横、纵截距之和等于(  )
A.-1B.1C.4D.5

查看答案和解析>>

同步练习册答案