精英家教网 > 高中数学 > 题目详情

已知抛物线C的顶点在坐标原点,焦点F在x轴上,且过点(1,2).
(Ⅰ)求抛物线C的方程;
(Ⅱ)命题:“过椭圆数学公式的一个焦点F1作与x轴不垂直的任意直线l”交椭圆于A、B两点,线段AB的垂直平分线交x轴于点M,则数学公式为定值,且定值是数学公式”.命题中涉及了这么几个要素:给定的圆锥曲线T,过该圆锥曲线焦点F1的弦AB,AB的垂直平分线与焦点所在的对称轴的交点M,AB的长度与F1、M两点间距离的比值.试类比上述命题,写出一个关于抛物线C的类似的正确命题,并加以证明.
(Ⅲ)试推广(Ⅱ)中的命题,写出关于抛物线的一般性命题(不必证明).

解:(Ⅰ)依题意,可设抛物线C的方程为:y2=2px(p>0),
∵抛物线C过点(1,2),
∴22=2p,解得p=2.
∴抛物线C的方程为:y2=4x.
(Ⅱ)关于抛物线C的类似命题为:过抛物线y2=4x的焦点F(1,0)作与x轴不垂直的任意直线l,
交抛物线线于A,B两点,线段AB的垂直平分线交x轴于点M,则为定值,且定值为2.
证明如下:
设直线AB的方程为x=ty+1,t≠0,
代入y2=4x,消去x,得y2-4ty-4=0.
∵△=16t2+16>0,
设A(x1,y1),B(x2,y2),则y1+y2=4t,y1y2=-4,
x1+x2=t(y1+y2)+2=4t2+2,
∴线段AB中点P的坐标为(2t2+1,2t),
AB的垂直平分线MP的方程为y-2t=-t(x-2t2-1),
令y=0,解得x=2t2+3,
即M(2t2+3,0),
∴|FM|=2t2+2,
由抛物线定义知,|AB|=x1+x2+2=4t2+4,

(Ⅲ)过抛物线的焦点F作与对称轴不垂直的任意直线l,交抛物线线于A,B两点,线段AB的垂直平分线交对称轴于点M,则为定值,且定值为2.
分析:(Ⅰ)设抛物线C的方程为:y2=2px(p>0),由抛物线C过点(1,2),解得p=2.由此能求出抛物线C的方程.
(Ⅱ)关于抛物线C的类似命题为:过抛物线y2=4x的焦点F(1,0)作与x轴不垂直的任意直线l,
交抛物线线于A,B两点,线段AB的垂直平分线交x轴于点M,则为定值,且定值为2.
证明:设直线AB的方程为x=ty+1,t≠0,代入y2=4x,得y2-4ty-4=0.△=16t2+16>0,设A(x1,y1),B(x2,y2),则y1+y2=4t,y1y2=-4,x1+x2=t(y1+y2)+2=4t2+2,故线段AB中点P的坐标为(2t2+1,2t),AB的垂直平分线MP的方程为y-2t=-t(x-2t2-1),令y=0,得M(2t2+3,0),由此能推导出
(Ⅲ)过抛物线的焦点F作与对称轴不垂直的任意直线l,交抛物线线于A,B两点,线段AB的垂直平分线交对称轴于点M,则为定值,且定值为2.
点评:本题主要考查直线与圆锥曲线的综合应用能力,综合性强,是高考的重点,易错点是圆锥曲线知识体系不牢固.本题具体涉及到轨迹方程的求法及直线与抛物线的相关知识,解题时要注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知抛物线C的顶点在原点,焦点为F(0,1).
(Ⅰ)求抛物线C的方程;
(Ⅱ)在抛物线C上是否存在点P,使得过点P的直线交C于另一点Q,满足PF⊥QF,且PQ与C在点P处的切线垂直?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•温州一模)已知抛物线C的顶点在原点,焦点为F(0,1),且过点A(2,t),
(I)求t的值;
(II)若点P、Q是抛物线C上两动点,且直线AP与AQ的斜率互为相反数,试问直线PQ的斜率是否为定值,若是,求出这个值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在原点,焦点为F(
1
2
,0)
.(1)求抛物线C的方程; (2)已知直线y=k(x+
1
2
)
与抛物线C交于A、B 两点,且|FA|=2|FB|,求k 的值; (3)设点P 是抛物线C上的动点,点R、N 在y 轴上,圆(x-1)2+y2=1 内切于△PRN,求△PRN 的面积最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在坐标原点,焦点F(1,0).
(Ⅰ)求抛物线C的方程;
(Ⅱ)命题:“过抛物线C的焦点F作与x轴不垂直的任意直线l交抛物线于A、B两点,线段AB的垂直平分线交x轴于点M,则
|AB||FM|
为定值,且定值是2”.判断它是真命题还是假命题,并说明理;
(Ⅲ)试推广(Ⅱ)中的命题,写出关于抛物线的一般性命题(注,不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在坐标原点,以坐标轴为对称轴,且焦点F(2,0).
(1)求抛物线C的标准方程;
(2)直线l过焦点F与抛物线C相交与M,N两点,且|MN|=16,求直线l的倾斜角.

查看答案和解析>>

同步练习册答案