精英家教网 > 高中数学 > 题目详情

将甲、乙、丙3名志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在乙、丙的前面,则不同的安排方法共有  种.

 

【答案】

20

【解析】

试题分析:根据题意,要求甲安排在另外两位前面,则甲有3种分配方法,即甲在星期一、二、三;

分3种情况讨论可得,

甲在星期一有A42=12种安排方法,

甲在星期二有A32=6种安排方法,

甲在星期三有A22=2种安排方法,

总共有12+6+2=20种。

考点:本题主要考查简单排列问题的解法,计数原理。

点评:简单题,涉及特殊元素、特殊位置问题,要注意利用分类讨论的思想,按一定的顺序分类,做到不重不漏.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某中学在高一开设了4门选修课,每个学生必须且只需选修1门选修课,对于该年级的甲、乙、丙3名学生,回答下列问题;
(1)求这3名学生选择的选修课互不相同的概率;
(2)求恰有2门选修课没有被这3名学生选择的概率;
(3)求这3名学生选择某一选修课的人数分别为0,1,2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学校本课程共开设了A,B,C,D共4门选修课,每个学生必须且只能选修1门选修课,现有该校的甲、乙、丙3名学生:
(1)求这3名学生选修课所有选法的总数;
(2)求恰有2门选修课没有被这3名学生选择的概率;
(3)求A选修课被这3名学生选择的人数的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•自贡一模)某中学在高二开设了4门选修课,每个学生必须且只需选修1门选修课,对于该年级的甲、乙、丙3名学生.
(I)求这3名学生选择的选修课互不相同的概率;
(II)求恰有2门选修课没有被这3名学生选择的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

将甲、乙、丙3名志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在乙、丙的前面,则不同的安排方法共有________种

查看答案和解析>>

同步练习册答案