精英家教网 > 高中数学 > 题目详情
4.若函数y=3x+(b-1)的图象不经过第二象限,则b的取值范围是(-∞,0].

分析 由条件可得1+(b-1)≤0,求得 b的范围.

解答 解:由函数y=3x+(b-1)的图象不经过第二象限,可得1+(b-1)≤0,求得 b≤0,
故答案为:(-∞,0].

点评 本题主要考查指数函数的图象特征,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设抛物线y2=4mx(m>0)的准线与x轴交于F1,焦点为F2;以F1、F2为焦点,离心率e=$\frac{1}{2}$的椭圆与抛物线的一个交点为$E(\frac{2}{3},\frac{{2\sqrt{6}}}{3})$;自F1引直线交抛物线于P、Q两个不同的点,点P关于x轴的对称点记为M,设$\overrightarrow{{F_1}P}=λ\overrightarrow{{F_1}Q}$.
(Ⅰ)求抛物线的方程和椭圆的方程;
(Ⅱ)求证:$\overrightarrow{{F_2}M}=-λ\overrightarrow{{F_2}Q}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求函数y=x2+ax+3在[0,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.过双曲线一焦点且垂直于双曲线实轴的直线交双曲线于A、B两点,若以AB为直径的圆恰过双曲线的一个顶点,则双曲线的离心率是(  )
A.$\frac{3}{2}$B.3C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x||x|<3},B={x|y=lg$\sqrt{x-1}$},则集合A∩(∁RB)=(  )
A.[0,3)B.[1,3)C.(1,3)D.(-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=cos2x-cos4x的最大值和最小正周期分别为(  )
A.$\frac{1}{4}$,πB.$\frac{1}{4}$,$\frac{π}{2}$C.$\frac{1}{2}$,πD.$\frac{1}{2}$,$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知抛物线C的顶点在坐标原点,焦点为圆M:x2+y2-4x=0的圆心,直线l与抛物线C的准线和y轴分别交于点P、Q,且P、Q的纵坐标分别为3t-$\frac{1}{t}$、2t(t∈R,t≠0).
(Ⅰ)求抛物线C的方程;
(Ⅱ)求证:直线l恒与圆M相切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知0<x<1,函数f(x)=(1+x2)(2-x),
(1)求函数f(x)的最小值;
(2)若a、b、c为正,且满足a+b+c=1,求证$\frac{1}{1+{a}^{2}}$+$\frac{1}{1+{b}^{2}}$+$\frac{1}{1+{c}^{2}}$≤$\frac{27}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x|2x-a|,g(x)=$\frac{{x}^{2}-a}{x-1}$(a∈R).
(1)求函数f(x)的单调增区间;
(2)若a<0,解不等式f(x)≥a;
(3)若0<a<12,且对任意t∈[3,5],方程f(x)=g(x)在x∈[3,5]总存在两不相等的实数根,求a的取值范围.

查看答案和解析>>

同步练习册答案