精英家教网 > 高中数学 > 题目详情
设等差数列{an}的前n项和为Sn,且S5=a5.若a4≠0,则
a7a4
=
 
分析:先根据S5=a5,可知a1+a2+a3+a4=0再根据等差中项的性质可得a1+a4=a2+a3=0,代入a1和d求得二者的关系,代入
a7
a4
答案可得.
解答:解:由已知S5=a5
∴a1+a2+a3+a4=0
∴a1+a4=a2+a3=0,
a1=-
3d
2

a7
a4
=
-
3d
2
+6d
-
3d
2
+3d
=3

故答案为3
点评:本题主要考查了等差数列的性质.运用了等差数列的等差中项和等差数列的通项公式,作为数列的基础知识,应强化记忆.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn.若S2k=72,且ak+1=18-ak,则正整数k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•山东)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为TnTn+
an+12n
(λ为常数).令cn=b2n(n∈N)求数列{cn}的前n项和Rn

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项之和为Sn满足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,已知(a4-1)3+2012(a4-1)=1(a2009-1)3+2012(a2009-1)=-1,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若S9=81,S6=36,则S3=(  )

查看答案和解析>>

同步练习册答案