(本题满分12分) 设函数(),.
(1) 将函数图象向右平移一个单位即可得到函数的图象,试写出的解析式及值域;
(2) 关于的不等式的解集中的整数恰有3个,求实数的取值范围;
(3) 对于函数与定义域上的任意实数,若存在常数,使得和都成立,则称直线为函数与的“分界线”.设,,试探究与是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
解:(1),值域为 …………2分
(2)解法一:不等式的解集中的整数恰有3个,
等价于恰有三个整数解,故,
令,由且,
所以函数的一个零点在区间,
则另一个零点一定在区间,……4分
故解之得. …6分
解法二:恰有三个整数解,故,即,
,
所以,又因为, ……4分
所以,解之得. ……6分
(3)设,则.
所以当时,;当时,.
因此时,取得最小值,
则与的图象在处有公共点. 8分
设与存在 “分界线”,方程为,
即,
由在恒成立,则在恒成立 .
所以成立,
因此. …8分
下面证明恒成立.
设,则.
所以当时,;当时,.
因此时取得最大值,则成立.
故所求“分界线”方程为:.
【解析】略
科目:高中数学 来源: 题型:
π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数(,为常数),且方程有两个实根为.
(1)求的解析式;
(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角中,四边形是边长为的正方形,,为上的点,且⊥平面
(Ⅰ)求证:⊥平面
(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com