精英家教网 > 高中数学 > 题目详情

(本题满分12分) 设函数),

(1) 将函数图象向右平移一个单位即可得到函数的图象,试写出的解析式及值域;

(2) 关于的不等式的解集中的整数恰有3个,求实数的取值范围;

(3) 对于函数定义域上的任意实数,若存在常数,使得都成立,则称直线为函数的“分界线”.设,试探究是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

 

 

【答案】

 

解:(1),值域为         …………2分

(2)解法一:不等式的解集中的整数恰有3个,

等价于恰有三个整数解,故,      

,由

所以函数的一个零点在区间

则另一个零点一定在区间,……4分

解之得.   …6分

解法二:恰有三个整数解,故,即

所以,又因为, ……4分

所以,解之得.           ……6分

(3)设,则

所以当时,;当时,

因此时,取得最小值

的图象在处有公共点.     8分

存在 “分界线”,方程为

恒成立,则恒成立 .

所以成立,

因此.              …8分

下面证明恒成立.

 设,则

 所以当时,;当时,

因此取得最大值,则成立.

故所求“分界线”方程为:

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

( 本题满分12分 )
已知函数f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12分)已知数列是首项为,公比的等比数列,,

,数列.

(1)求数列的通项公式;(2)求数列的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题

(本题满分12分,第1小题6分,第2小题6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB

(2) 若,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题

(本题满分12分)

设函数为常数),且方程有两个实根为.

(1)求的解析式;

(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题

(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)

如图所示,直二面角中,四边形是边长为的正方形,上的点,且⊥平面

(Ⅰ)求证:⊥平面

(Ⅱ)求二面角的大小;

(Ⅲ)求点到平面的距离.

 

查看答案和解析>>

同步练习册答案