精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|x-m|和函数g(x)=x|x-m|+m2-7m.
(1)若方程f(x)=|m|在[-4,+∞)上有两个不同的解,求实数m的取值范围;
(2)若对任意x1∈(-∞,4],均存在x2∈[3,+∞),使得f(x1)>g(x2)成立,求实数m的取值范围.
分析:(1)解方程f(x)=|m|,解得x=0,或x=2m.由题意可得 2m≥-4,且2m≠0,由此求得实数m的取值范围.
(2)命题等价于任意x1∈(-∞,4],任意的x2∈[3,+∞),fmin(x1)>gmin(x2) 成立,分m<3、
3≤m<4、4≤m三种情况,分别求出实数m的取值范围再取并集,即得所求.
解答:解:(1)方程f(x)=|m|,即|x-m|=|m|,解得x=0,或x=2m.
要使方程|x-m|=|m|在[-4,+∞)上有两个不同的解,
需 2m≥-4,且2m≠0.解得 m≥-2 且m≠0.
故实数m的取值范围为[-2,0)∪(0,+∞).
(2)由于对任意x1∈(-∞,4],都存在x2∈[3,+∞),使f(x1)>g(x2)成立,
故有 fmin(x1)>gmin(x2)  成立.
又函数f(x)=|x-m|=
x-m , x≥m
m-x , x<m
,故fmin(x1)=
0 , m≤4
f(4) =m-4, m>4

又函数g(x)=x|x-m|+m2-7m=
x(m-x)+2-7m ,x<m
x(x-m)+2-7m , x≥m

故gmin(x2)=
g(3) =m2-10m+9  , m<3
g(m) = m2-7m  ,  m≥3

当m<3时,有0>m2-10m+9,解得 1<m<3.
当 3≤m<4,有0>m2-7m,解得 3≤m<4.
当4≤m,有m-4>m2-7m,解得 4≤m<4+2
3

综上可得,1<m<4+2
3
,故实数m的取值范围为(1,4+2
3
 ).
点评:本题主要考查带有绝对值的函数,方程根的存在性及个数判断,函数最值及其几何意义,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案