精英家教网 > 高中数学 > 题目详情

如图,已知圆O内接四边形ABCD中,AB=1,BC=2,CD=3,DA=4
求(1)四边形ABCD的面积;
(2)圆O的半径R.

解:(1)连接AC,在△ABC中由余弦定理,得
AC2=AB2+BC2-2AB•BCcos∠ABC=12+22-2×1×2cos∠ABC=5-4cos∠ABC(3分)
在△ACD中由余弦定理,得AC2=AD2+DC2-2AD•DCcos∠ADC=42+32-2×4×3cos∠ADC=25-24cos∠ADC(6分)
从而得5-4cos∠ABC=25-24cos∠ADC,
又∠ADC=π-∠ABC,故,(9分)

所以.(10分)
所以×=(12分)
(2)由,解得(16分)
分析:(1)连接AC,在△ABC、△ACD中分别用由余弦定理求AC2,两式右边相等消去AC2,式子两角是互补的,得出角的正弦值,利用三角形面积公式可求出两个三角形的面积,加起来是要求的四边形的面积.
(2)由(1)可求出sin∠ADC和AC,利用正弦定理得直径,除以2得半径.
点评:本题两次用到余弦定理,衔接点有两处,一是有一条公共边,二是式子中两个角互补,圆内接四边形的对角补,要从图中读出,这点很重要;
正弦定理记忆的时候要全面,它的比值是三角形外接圆的直径,知道这一点,问题迎刃而解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知△ABC内接于圆O,AB是圆O的直径,四边形DBCE为平行四边形,EC⊥平面ABC,AB=2AC=2,tan∠DAB=
3
2

(1)设F是CD的中点,证明:OF∥平面ADE;
(2)求点B到平面ADE的距离;
(3)画出四棱锥A-BCED的正视图(圆O在水平面,ABD在正面,要求标明垂直关系与至少一边的长).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知△ABC内接于圆O,AB是圆O的直径,四边形DBCE为平行四边形,EC⊥平面ABC,AB=2AC=2,数学公式
(1)设F是CD的中点,证明:OF∥平面ADE;
(2)求点B到平面ADE的距离;
(3)画出四棱锥A-BCED的正视图(圆O在水平面,ABD在正面,要求标明垂直关系与至少一边的长).

查看答案和解析>>

同步练习册答案