精英家教网 > 高中数学 > 题目详情
某学校有男老师45名,女老师15名,按照分层抽样的方法组建了一个4人的学科攻关小组.
(1)求某老师被抽到的概率及学科攻关小组中男、女老师的人数;
(2)经过一个月的学习、讨论,这个学科攻关小组决定选出2名老师做某项实验,方法是先从小组里选出1名老师做实验,该老师做完后,再从小组内剩下的老师中选1名做实验,求选出的2名老师中恰有1名女老师的概率.
考点:列举法计算基本事件数及事件发生的概率,分层抽样方法
专题:概率与统计
分析:(1)按照分层抽样的按比例抽取的方法,男女老师抽取的比例是45:15,4人中的男女抽取比例也是45:15,从而解决;
(2)先算出选出的2名老师的基本事件数,有(a1,a2),(a1,a3),(a2,a3),(a1,b),(a2,b),(a3,b),共6种;再算出恰有1名女老师事件事件数,两者比值即为所求概率.
解答: 解:(1)由题意知,该校共有老师60名,
故某老师被抽到的概率为P=
4
60
=
1
15

设该学科攻关小组中男老师的人数为x,
45
60
=
x
4
,解得x=3,
所以该学科攻关小组中男、女老师的人数分别为3,1.
(2)由(1)知,该3名男老师和1名女老师分别记为a1,a2,a3,b,
则选取2名老师的基本事件有:
(a1,a2),(a1,a3),(a2,a3),(a1,b),(a2,b),(a3,b),共6种,
其中恰有1名女老师的基本事件有3种,
所以选出的2名老师中恰有1名女老师的概率为P=
3
6
=
1
2
点评:本题主要考查分层抽样方法、概率的求法,是一道简单的综合性的题目,解答的关键是正确理解抽样方法及样本估计的方法,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sin(π+θ)=-
3
cos(2π-θ),|θ|<
π
2
,则θ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2-4x-m+4在区间[3,5)上有零点,则m的取值范围是(  )
A、(0,4)
B、[4,9)
C、[1,9)
D、[1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

从4男3女志愿者中,选1女2男分别到A,B,C地执行任务,则不同的选派方法(  )
A、36种B、108种
C、210种D、72种

查看答案和解析>>

科目:高中数学 来源: 题型:

将一块长为10的正方形纸片ABCD剪去四个全等的等腰三角形△SEE′,△SFF′,△SGG′,△SHH′,再将剩下的阴影部分折成一个四棱锥形状的工艺品包装盒S-EFGH,其中A,B,C,D重合于点O,E与E′重合,F与F′重合,G与G′重合,H与H′重合(如图所示)

(1)求证:平面SEG⊥平面SFH
(2)试求原平面图形中AE的长,使得二面角E-SH-F的余弦值恰为
2
3

(3)指出二面角E-SH-F的余弦值的取值范围(不必说明理由)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-x2+a的图象在点x=0处的切线为y=bx(e为自然对数的底数).
(1)求函数f(x)的解析式;
(2)当x∈R时,求证:f(x)≥-x2+x;
(3)若f(x)>kx对任意的x∈(0,+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校随机调查了80位学生,以研究学生中爱好羽毛球运动与性别的关系,得到下面的数据表:
爱好不爱好合计
203050
102030
合计305080
(1)将此样本的频率估计为总体的概率,随机调查了本校的3名学生.设这3人中爱好羽毛球运动的人数为X,求X的分布列和期望值;
(2)根据表中数据,能否有充分证据判定爱好羽毛球运动与性别有关联?若有,有多大把握?
p(Χ2≥k)0.1000.0500.010
k2.7063.8416.635
附:Χ2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,a7=-11,a2=4a3
(1)求{an}的通项公式;
(2)求|a1|+|a2|+…+|an|.

查看答案和解析>>

科目:高中数学 来源: 题型:

若椭圆的方程为
x2
10-a
+
y2
a-2
=1,且此椭圆的焦距为4,则实数a=
 

查看答案和解析>>

同步练习册答案