精英家教网 > 高中数学 > 题目详情
已知ABCD为平行四边形,且A(4,1,3),B(2,-5,1),C(3,7,-5),则点D的坐标为
 
分析:由ABCD为平行四边形,结合平行四边形的性质,两条对角线互相平分,我们易得平行四边形的中心(即两条对角线的交点),即是AC的中点,也是BD的中点,根据中点坐标公式,我们不难得到A,C两点的坐标和等于B、D两点的坐标和,构造方程,解方程即可求出答案.
解答:解:由平行四边形的两条对角线互相平分,得
A,C两点的坐标和等于B、D两点的坐标和
设D点坐标为(x,y,z)
4+3=2+x
1+7=-5+y
3-5=1+z

解得:
x=5
y=13
z=-3

故答案为:(5,13,-3)
点评:当已知平行四边形的三个顶点坐标,求第四个顶点的坐标时,我们常利用平行四边形的性质:对角线互相平分,推出对角线上两个顶点的坐标之和相等,从而构造方程,解方程求出第四个顶点的坐标.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2
2
,SA=SB=
3

(Ⅰ)证明:SA⊥BC;
(Ⅱ)求直线SD与平面SBC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD.已知∠ABC=45°,AB=2,BC=2
2
,SA=SB=
3

(1)证明:SA⊥BC;
(2)求直线SD与平面SAB所成角的大小;
(3)求二面角D-SA-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD.
(1)若底面ABCD为菱形,∠DAB=60°,PA=PD,求证:PB⊥AD;
(2)若底面ABCD为平行四边形,E为PC的中点,在DE上取点F,过AP和点F的平面与平面BDE的交线为FG,求证:AP∥FG.

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥S-ABCD中,底面ABCD为平行四边形,SO⊥底面ABCD,O在CB上.已知∠ABC=45°,AB=2,BC=2
2
,SA=SB=
3

(Ⅰ)求证:平面SCB⊥平面ABCD;
(Ⅱ)求四棱锥S-ABCD的体积;
(Ⅲ)求直线SD与平面SAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知四边形ABCD为平行四边形,BC⊥平面ABE,AE⊥BE,BE=BC=1,AE=
3
,M为线段AB的中点,N为线段DE的中点,P为线段AE的中点.
(1)求证:MN⊥EA;
(2)求四棱锥M-ADNP的体积.

查看答案和解析>>

同步练习册答案