精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱柱的底面是菱形,平面,点的中点.

(1)求证:直线平面

(2)求证:平面

(3)求直线与平面所成的角的正切值.

【答案】(1)见解析;(2)见解析;(3)

【解析】

1)只需证明POBD1,即可得BD1∥平面PAC;(2)只需证明ACBDDD1AC.即可证明AC⊥平面BDD1B13)∠CPO就是直线CP与平面BDD1B1所成的角,在RtCPO中,tanCPO即可求解

(1)设交于点,连结

由于分别是的中点,故

平面平面

所以直线平面

(2)在四棱柱中,

底面是菱形,则

平面,且平面,则

平面平面

平面

(3)由(2)知平面

在平面内的射影为

与平面所成的角

因为,所以为正三角形

中,

与平面所成的角的正切值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知关于的一元二次方程有实数根.

1)求实数m的取值范围;

2)当m=2时,方程的根为,求代数式的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义方程的实数根叫做函数的“新驻点”,若函数的“新驻点”分别为,则的大小关系为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年6月14日,第二十一届世界杯尼球赛在俄罗斯拉开了帷幕,某大学在二年级作了问卷调查,从该校二年级学生中抽取了人进行调查,其中女生中对足球运动有兴趣的占,而男生有人表示对足球运动没有兴趣.

(1)完成列联表,并回答能否有的把握认为“对足球是否有兴趣与性别有关”?

有兴趣

没有兴趣

合计

合计

(2)若将频率视为概率,现再从该校二年级全体学生中,采用随机抽样的方法每饮抽取名学生,抽取次,记被抽取的名学生中对足球有兴趣的人数为,若每次抽取的结果是相互独立的,求的分布列和数学期望.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题:

①函数的最小正周期是

②在直角坐标系中,点,将向量绕点逆时针旋转得到向量,则点的坐标是

③在同一直角坐标系中,函数的图象和函数的图象有两个公共点;

④函数上是增函数.

其中,正确的命题是________(填正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程及曲线的直角坐标方程;

(2)若直线与曲线交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与圆关于直线对称.

(1)求圆的标准方程;

(2)已知点,若与直线垂直的直线与圆交于不同两点,且是钝角,求直线轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一款手机,每部购买费用是5000元,每年网络费和电话费共需1000元;每部手机第一年不需维修,第二年维修费用为100元,以后每一年的维修费用均比上一年增加100.设该款手机每部使用年共需维修费用元,总费用.(总费用购买费用网络费和电话费维修费用)

1)求函数的表达式:

2)这款手机每部使用多少年时,它的年平均费用最少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数在定义域内的极值点的个数;

2)若函数处取得极值,且对任意, 恒成立,求实数的取值范围;

3)当时,求证:

查看答案和解析>>

同步练习册答案