精英家教网 > 高中数学 > 题目详情
19.供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.请根据如表提供的数据(其中$\stackrel{∧}{b}$=0.7,y=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$),用最小二乘法求出y关于x的线性回归方程y=0.7x+0.35.
x3456
y2.5344.5

分析 由已知表格中的数据,我们根据平均数公式计算出变量x,y的平均数,利用最小二乘法做出线性回归直线的方程的系数,写出回归直线的方程,得到结果.

解答 解:∵由题意知$\overline{x}$=4.5,$\overline{y}$=3.5,
$\stackrel{∧}{b}$=0.7,$\stackrel{∧}{a}$=3.5-3.15=0.35
∴要求的线性回归方程是y=0.7x+0.35,
故答案为:y=0.7x+0.35.

点评 本题考查线性回归方程的求法,考查最小二乘法,是一个基础题,解题时运算量比较大,注意利用公式求系数时,不要在运算上出错.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知p:|2x+1|≤3,q:x2-2x+1-m2≤0(m>0),若¬p是¬q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.等差数列{an}前n项和为Sn,若bn=$\frac{1}{S_n}$,a3b3=$\frac{1}{2}$,S5+S3=21
(1)求Sn
(2)记Tn=$\sum_{i=1}^n{b_i}$,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,a,b,c分别为内角A,B,C所对的边,且$\sqrt{3}c=2asinC$.
(1)求角A的大小;
(2)若∠A为锐角,a=2$\sqrt{3}$,S△ABC=2$\sqrt{3}$,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果函数f(x)为奇函数,当x<0时,f(x)=ln(-x)+3x,则曲线在点(1,3)处的切线方程为(  )
A.y+3=-2(x-1)B.y-3=2(x-1)C.y+3=4(x-1)D.y-3=4(x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若函数f(x)=$\frac{1}{x}$(x>0),g(x)=log2(2-|x+1|)
(1)写出函数g(x)的单调区间.
(2)若y=a 与函数g(x)的图象恰有1个公共点M,N 是f(x)图象上的动点.求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线l1的方向向量为$\vec a=(1,2)$,直线l2的方向向量为$\vec b=(1,-3)$,那么l1与l2所成的角是(  )
A.30°B.45°C.150°D.160°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=2+4cosφ}\\{y=4sinφ}\end{array}\right.$,(φ为参数),以原点O为极点,以x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$.
(Ⅰ)将直线l写成参数方程$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$,(t为参数)的形式,并求曲线C的普通方程;
(Ⅱ)若直线l与曲线C交于A,B两点,点P的直角坐标为(1,0),求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\overrightarrow a=(2cosx,2sinx)$,$\overrightarrow b=(sin(x-\frac{π}{6}),cos(x-\frac{π}{6}))$,函数f(x)=cos<$\overrightarrow{a}$,$\overrightarrow{b}$>.
(Ⅰ)求函数f(x)零点;
(Ⅱ)若△ABC的三内角A、B、C的对边分别是a、b、c,且f(A)=1,求$\frac{b+c}{a}$的取值范围.

查看答案和解析>>

同步练习册答案