精英家教网 > 高中数学 > 题目详情

已知直线l:2x+y+2=0及圆C:x2+y2=2y.
(1)求垂直于直线l且与圆C相切的直线l′的方程;
(2)过直线l上的动点P作圆C的一条切线,设切点为T,求|PT|的最小值.

(1)x-2y+2±=0
(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知以点C(1,﹣2)为圆心的圆与直线x+y﹣1=0相切.
(1)求圆C的标准方程;
(2)求过圆内一点P(2,﹣)的最短弦所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C过原点且与相切,且圆心C在直线上.
(1)求圆的方程;(2)过点的直线l与圆C相交于A,B两点, 且, 求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,⊙O内切△ABC的边于D、E、F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G.求证:

(1)圆心O在直线AD上;
(2)点C是线段GD的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知实数
(1)求直线y=ax+b不经过第四象限的概率:
(2)求直线y=ax+b与圆有公共点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动圆()
(1)当时,求经过原点且与圆相切的直线的方程;
(2)若圆恰在圆的内部,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线;设为曲线上的一个不在轴上的动点,为坐标原点,过点的平行线交曲线两个不同的点.
(1)求曲线的方程;
(2)试探究的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;
(3)记的面积为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,圆O1与圆O2的半径都是1,O1O2=4,过动点P分别作圆O1、圆O2的切线PM、PN(M、N分别为切点),使得PM=PN,试建立适当的坐标系,并求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切。则圆C的方程为                     。

查看答案和解析>>

同步练习册答案