精英家教网 > 高中数学 > 题目详情

【题目】如图所示,已知抛物线C1:x2=2py的焦点在抛物线C2,点P是抛物线C1上的动点.

(1)求抛物线C1的方程及其准线方程;

(2)过点P作抛物线C2的两条切线,M,N分别为两个切点,设点P到直线MN的距离为d,求d的最小值.

【答案】(1);(2)

【解析】

(1)由题意抛物线C1的焦点为抛物线C2的顶点(0,1),由此算出p=2,从而得到抛物线C1的方程,得到C1的准线方程;(2)设P(2t,t2),用直线方程的点斜式列出直线PM方程并将点P坐标代入,化简可得 同理得到.然后利用一元二次方程根与系数的关系,算出x1+x2=4t,x1x2=2t2﹣2,将直线MN的两点式方程化简并代入前面算出的式可得MN的方程为y=2tx+2﹣t2.最后利用点到直线的距离公式列式,采用换元法并且运用基本不等式求最值,即可算出P到直线MN的距离d的最小值为

(1)C1的焦点为,所以=0+1,得p=2.C1的方程为x2=4y,其准线方程为y=-1.

(2)P(2t,t2),M,N,则PM的方程为y-=x1(x-x1),将P点坐标代入得t2=2tx1x+1,即x-4tx1+2t2-2=0,同理得x-4tx2+2t2-2=0.MN的方程为y- (x-x1),即y- (x1+x2)(x-x1).

x1+x2=4t, x-2tx1=1-t2,所以直线MN的方程为y=2tx+2-t2.

于是d==2.

令s=1+4t2(s≥1),则d= (当且仅当s=3时取等号),

所以d的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设k是一个正整数,(1+ k的展开式中第四项的系数为 ,记函数y=x2与y=kx的图象所围成的阴影部分为S,任取x∈[0,4],y∈[0,16],则点(x,y)恰好落在阴影区域内的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为 (t为参数),以坐标原点为极点,x轴的非负半轴为极轴,建立极坐标系,圆C的极坐标方程为ρ=4cosθ,直线l与圆C交于A,B两点.
(1)求圆C的直角坐标方程及弦AB的长;
(2)动点P在圆C上(不与A,B重合),试求△ABP的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF.若,cos ∠ABF=,则C的离心率为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从边长为2a的正方形铁片的四个角各截去一个边长为x的正方形,然后折成一个无盖的长方体盒子,要求长方体的高度x与底面正方形边长的比不超过正数t.

(1)把铁盒的容积V表示为关于x的函数,并指出其定义域.

(2)当x为何值时,容积V有最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=3sinx﹣πx,命题p:x∈(0, ),f(x)<0,则(
A.p是假命题,¬p:?x∈(0, ),f(x)≥0
B.p是假命题,¬p:?x0∈(0, ),f(x0)≥0
C.p是真命题,¬p:?x∈(0, ),f(x)>0
D.p是真命题,¬p:?x0∈(0, ),f(x0)≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln x-mx+n,m,n∈R.

(1)若函数f(x)的图像在点(1,f(1))处的切线为y=2x-1,求m,n的值;

(2)求函数f(x)的单调区间;

(3)若n=0,不等式f(x)+m<0对x∈(1,+∞)恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3+bx+2在x=2处取得极值-14.

(1)求a,b的值;

(2)若f(x)≥kx在上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= 恰有2个零点,则实数m的取值范围是

查看答案和解析>>

同步练习册答案