精英家教网 > 高中数学 > 题目详情
(2010•浙江模拟)在“自选模块”考试中,某考场的每位同学都选作了一道数学题,第一小组选《不等式选讲》的有1人,选《坐标系与参数方程》的有5人;第二小组选《不等式选讲》的有2人,选《坐标系与参数方程》的有4人.现从第一、第二两小组各任选2人分析得分情况.
(1)求选出的4 人均为选《坐标系与参数方程》的概率;
(2)设ξ为选出的4个人中选《不等式选讲》的人数,求ξ的分布列和数学期望.
分析:(1)设“从第一小组选出的2人均选?坐标系与参数方程?”为事件A,“从第二小组选出的2人均选?坐标系与参数方程?”为事件B,然后根据古典概型的概率公式求出P(A)与P(B),而由于A和B事件相互独立,则选出的4人均选?坐标系与参数方程?的概率为P(A•B)=P(A)•P(B);
(2)ξ可能的取值为0,1,2,3,然后根据等可能事件和相互独立事件的概率公式分别求出相应的概率,列出分布列,最后根据数学期望公式解之即可.
解答:(本小题满分12分)
解:(1)设“从第一小组选出的2人均选?坐标系与参数方程?”为事件A,“从第二小组选出的2人均选?坐标系与参数方程?”为事件B.
由于A和B事件相互独立,且P(A)=
C
2
5
C
2
6
=
2
3
P(B)=
C
2
4
C
2
6
=
2
5

所以选出的4人均选?坐标系与参数方程?的概率为P(A•B)=P(A)•P(B)=
2
3
2
5
=
4
15
.…(6分)
(2)ξ可能的取值为0,1,2,3.
P(ξ=0)=
C
2
5
C
2
6
C
2
4
C
2
6
=
4
15

P(ξ=1)=
C
2
5
C
2
6
C
1
2
C
1
4
C
2
6
+
C
1
5
C
2
6
C
2
4
C
2
6
=
22
45

P(ξ=3)=
C
1
5
C
2
6
1
C
2
6
=
1
45

P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)=
2
9

ξ的分布列为
  ξ   0   1   2   3
  P
4
15
22
45
2
9
1
45
∴ξ的数学期望 Eξ=0×
4
15
+1×
22
45
+2×
2
9
+3×
1
45
=1
…(12分)
点评:本题主要考查了古典概型的概率公式,以及相互独立事件的概率和离散型随机变量的期望和分布列,同时考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•浙江模拟)设函数f(x)=2cos2x+2
3
sinxcosx+m(x∈R)

(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若x∈[0,
π
2
]
,是否存在实数m,使函数f(x)的值域恰为[
1
2
7
2
]
?若存在,请求出m的取值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•浙江模拟)如果数列{an}满足:首项a1=1且an+1=
2an,n为奇数
an+2,n为偶数
那么下列说法中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•浙江模拟)设i为虚数单位,则(
1+ii
)4
=
-4
-4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•浙江模拟)若某一程序框图如图所示,则该程序运行后输出的S等于
5
11
5
11

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•浙江模拟)已知四棱锥P-ABCD,底面是边长为1的正方形,侧棱PC长为2,且PC⊥底面ABCD,E是侧棱PC上的动点.
(Ⅰ)不论点E在何位置,是否都有BD⊥AE?证明你的结论;
(Ⅱ)求点C到平面PDB的距离;
(Ⅲ)若点E为PC的中点,求二面角D-AE-B的大小.

查看答案和解析>>

同步练习册答案