精英家教网 > 高中数学 > 题目详情

【题目】如图,直四棱柱中,四边形为梯形, ,且.过三点的平面记为 的交点为.

(I)证明: 的中点;

(II)求此四棱柱被平面所分成上下两部分的体积之比.

【答案】(1)见解析;(2) .

【解析】试题分析(1)由已知得平面QBC平面A1AD,从而QC∥A1D,由此能证明Q为BB1的中点.

(2)连接QA,QD.设AA1=h,梯形ABCD的高为d,四棱柱被平面α所分成上下两部分的体积分别为V和V,BC=a,则AD=2a.V=+V四棱锥QABCD=ahd .

= ahd,由此能求出此四棱柱被平面α所分成上下两部分的体积之比.

(I)证明:延长交于,则平面

平面,平面平面

所以因为

所以,即的中点.

(II)如图所示,连接.设,梯形的高为,四棱柱被平面所分成上下两部分的体积分别为 ,则 .

三棱椎, 四棱椎 所以=三棱椎+四棱椎= .又四棱柱

所以=四棱柱

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且满足Sn=n2﹣4n,数列{bn}中,b1= 对任意正整数
(1)求数列{an}的通项公式;
(2)是否存在实数μ,使得数列{3nbn+μ}是等比数列?若存在,请求出实数μ及公比q的值,若不存在,请说明理由;
(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是一个等差数列且a2+a8=﹣4,a6=2
(1)求{an}的通项公式;
(2)求{an}的前n项和Sn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论正确的是(
A.各个面都是三角形的几何体是三棱锥
B.一平面截一棱锥得到一个棱锥和一个棱台
C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥
D.圆锥的顶点与底面圆周上的任意一点的连线都是母线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, ⊥平面 分别为的中点.(19)

(I)求到平面的距离;

(II)在线段上是否存在一点,使得平面平面,若存在,试确定的位置,并证明此点满足要求;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点(1, )是函数f(x)= ax(a>0,a≠1)图象上一点,等比数列{an}的前n项和为c﹣f(n).数列{bn}(bn>0)的首项为2c,前n项和满足 = +1(n≥2). (Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{ }的前n项和为Tn , 问使Tn 的最小正整数n是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)已知函数

)当求曲线在点处的切线方程;

)求函数的极值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x)满足f(x+1)= ,且f(x)在[﹣3,﹣2]上是减函数,若α,β是锐角三角形的两个内角,则(
A.f(sinα)>f(sinβ)
B.f(cosα)>f(cosβ)
C.f(sinα)>f(cosβ)
D.f(sinα)<f(cosβ)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于实数a和b,定义运算“*”: ,设f(x)=(2x﹣1)*(x﹣1),且关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根x1 , x2 , x3 , 则实数m的取值范围是;x1+x2+x3的取值范围是

查看答案和解析>>

同步练习册答案