精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,圆O:与坐标轴分别交于A1,A2,B1,B2(如图).

(1)点Q是圆O上除A1,A2外的任意点(如图1),直线A1Q,A2Q与直线交于不同的两点M,N,求线段MN长的最小值;

(2)点P是圆O上除A1,A2,B1,B2外的任意点(如图2),直线B2Px轴于点F,直线A1B2A2P于点E.设A2P的斜率为k,EF的斜率为m,求证:2mk为定值.

(图1) (图2)

【答案】(1)2;(2)证明见解析。

【解析】

(1)设A2Q的斜率为k,求出直线A1Q和A2Q的方程,得出M,N的坐标,从而得出MN关于k的表达式,进而得出MN的最小值;

(2)求出直线方程,得出E、F的坐标,进而得出m与k的关系,从而得出结论.

(1)由题设可以得到直线的斜率存在设方程为,

直线的方程为,

,解得;由,解得

所以,直线与直线的交点

直线与直线的交点,所以.

时, ,等号成立的条件是

时, ,等号成立的条件是.

故线段长的最小值是2.

(2)法1:由题意可知,

的斜率为,∴直线的方程为,由

则直线的方程为,令,则,即

∵直线的方程为,由解得

的斜率,

(定值).

法2:设, ,

,

所以直线方程:

:直线方程,

,得

,得

,

(定值)。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数)且函数是奇函数.

(1)求的值;

(2)是否存在这样的实数,使对所有的均成立?若存在,求出适合条件的实数的值或范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数满足:对任何,都有,且当时,,在下列结论中,正确命题的序号是________

对任何,都有;② 函数的值域是

存在,使得;④ “函数在区间上单调递减”的充要条

件是“存在,使得”;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在正数xy,使得,其中e为自然对数的底数,则实数的取值范围是_____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,ABCD是正方形,O是正方形的中心,PO底面ABCD,底面边长为aEPC的中点.

(1)求证:平面PAC平面BDE

(2)若二面角EBDC30°,求四棱锥PABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数,),且数列是首项为,公差为的等差数列.

1)求证:数列是等比数列;

2)若,当时,求数列的前项和的最小值;

3)若,问是否存在实数,使得是递增数列?若存在,求出的范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数x,y满足x3<y3,则下列不等式中恒成立的是(  )

A. x>(y B. ln(x2+1)>ln(y2+1)

C. D. tanx>tany

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,且asinB=bsin(A+).

(1)求A;

(2)若b,a,c成等差数列,△ABC的面积为2,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是( )

A. 2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件

B. 2018年1~4月的业务量同比增长率均超过50%,在3月底最高

C. 从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致

D. 从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长

查看答案和解析>>

同步练习册答案