精英家教网 > 高中数学 > 题目详情

【题目】 表示正整数 在十进制下的各位数码之和.定义证明:对任意的 ,存在无穷多个,使得 .

【答案】见解析

【解析】

先证明两个引理.

引理1 设,有 .

引理1的证明 对任意,有.

.

反复利用式①得

.

引理2 对任意,存在 ,满足.

引理2的证明 取 ,则.

由三进制表示的唯一性,知当(可重集合)时, .

于是,的每一位上的数码最大为2.故.

类似于前面的讨论,中的每一位上的数字最大为6.从而,.

引理1、2得证.

下面用反证法证明原题.

假设只有有限个正整数 满足条件.则存在一个,使得当 时, .

.则.

依次下去,知对任意,均有.

再取一个充分大的,使得 ,且 .

由引理2 ,知存在,满足.

故由引理1知.

,矛盾.

从而,对任意,存在无穷多个 ,使得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线与二次曲线4个不同的交点,由下面的草图可以看出,下面三个结论是成立的,请给出证明.

(1).两曲线的4个交点中,至少有两个交点位于轴的下方;

(2).抛物线必与轴有两个不同的交点,记为

(3).两曲线的4个交点中,必存在一点,使.

.的不同取值会有无数个图形,此处仅就各给出一个示意图,同时也就限制由图看出的解答.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实数.

(1)时,求的最小值

(2)若存在实数,使得对任意实数都有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】19的九个数字中取三个偶数四个奇数,试问:

①能组成多少个没有重复数字的七位数?

②上述七位数中三个偶数排在一起的有几个?

③在①中的七位数中,偶数排在一起、奇数也排在一起的有几个?

④在①中任意两偶数都不相邻的七位数有几个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=2px的焦点为F,准线方程是x=﹣1

I)求此抛物线的方程;

)设点M在此抛物线上,且|MF|=3,若O为坐标原点,求△OFM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司招聘员工,先由两位专家面试,若两位专家都同意通过,则视作通过初审予以录用;若这两位专家都未同意通过,则视作未通过初审不予录用;当这两位专家意见不一致时,再由第三位专家进行复审,若能通过复审则予以录用,否则不予录用.设应聘人员获得每位初审专家通过的概率均为,复审能通过的概率为,各专家评审的结果相互独立.

1)求某应聘人员被录用的概率;

2)若4人应聘,设X为被录用的人数,试求随机变量X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的选项为(

①平面外一条直线与平面内的一条直线平行,则该直线与此平面平行;

②一个平面内的一条直线与另一个平面平行,则这两个平面平行;

③一条直线与一个平面内的两条直线垂直,则该直线与此平面垂直;

④一个平面过另一个平面的垂线,则这两个平面垂直.

A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为平面上两个点集,满足,且任意三点不共线.在集合间各连若干条线段,每条线段均一个端点在集合中,另一个端点在集合中,且任意两点间至多连一条线段,记所有线段构成的集合为.若集合满足对于集合中任意一点均至少连出条线段,则称集合一好的”.试确定的最大值,使得去掉任意一条线段,集合均不是一好的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为数列的前项和为满足,且.若存在使得成立则实数的最小值为__________

查看答案和解析>>

同步练习册答案