精英家教网 > 高中数学 > 题目详情

【题目】已知为实数,函数.

(1)若是函数的一个极值点,求实数的取值;

(2)设,若,使得成立,求实数的取值范围.

【答案】(1) ,(2) .

【解析】试题分析:(1)求出函数f(x)定义域,函数的导函数f′(x),假设存在实数a,使f(x)在x=3处取极值,则f′(3)=0,求出a,验证推出结果.

2)由f x0≤gx0 得:(x0lnx0a≥x022x0,记Fx=xlnxx0),求出F′x),推出Fx≥F1=10,转化a≥,记Gx=x[e]求出导函数,求出最大值,列出不等式求解即可.

解析:(1)函数定义域为

.

是函数的一个极值点,∴,解得.

经检验时, 是函数的一个极小值点,符合题意,

.

(2)由,得

∴当 时, 单调递减;

时, 单调递増.

,记

.

,∴

时, 单调递减;

时, 单调递增,

.

故实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax﹣(k﹣1)ax(a>0且a≠1)是定义域为R的奇函数.
(1)求k值;
(2)若f(1)<0,试判断y=f(x)的单调性并求使不等式f(x2+tx)+f(4﹣x)<0恒成立的t的取值范围;
(3)若f(1)= ,g(x)=a2x+a2x﹣2f(x),求k∈N+在[1,+∞)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且asinB=﹣bsin(A+ ).
(1)求A;
(2)若△ABC的面积S= c2 , 求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)当a=﹣2时,求不等式f(x)<g(x)的解集;
(2)设a>﹣1,且当x∈(﹣ )时,f(x)≤g(x),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某批发市场对某种商品的日销售量(单位:吨)进行统计,最近50天的统计结果如下:

若以上表中频率作为概率,且每天的销售量相互独立.

(1)求5天中该种商品恰好有两天的日销售量为1.5吨的概率;

(2)已知每吨该商品的销售利润为2千元, 表示该种商品某两天销售利润的和(单位:千元),求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知离散型随机变量X的分布列如表:

X

﹣1

0

1

2

P

a

b

c

若E(X)=0,D(X)=1,则a,b的值分别为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为实数,函数.

(1)若是函数的一个极值点,求实数的取值;

(2)设,若,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知函数f(x)=x3ax2bxc,曲线yf(x)在点x=1处的切线方程为

ly=3x+1,且当x时,yf(x)有极值.

(1)求abc的值;

(2)求yf(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“莞马”活动中的α机器人一度成为新闻热点,为检测其质量,从一生产流水线上抽取20件该产品,其中合格产品有15件,不合格的产品有5件.
(1)现从这20件产品中任意抽取2件,记不合格的产品数为X,求X的分布列及数学期望;
(2)用频率估计概率,现从流水线中任意抽取三个机器人,记ξ为合格机器人与不合格机器人的件数差的绝对值,求ξ的分布列及数学期望.

查看答案和解析>>

同步练习册答案