精英家教网 > 高中数学 > 题目详情

【题目】某企业年的纯利润为万元,因设备老化等原因,企业的生产能力将逐年下降,若不进行技术改造,预测从今年(年)起每年比上一年纯利润减少万元,今年初该企业一次性投入资金万元进行技术改造,预计在未扣除技术改造资金的情况下,第年(今年为第一年)的利润为万元(为正整数).

1)设从今年起的前年,若该企业不进行技术改造的累计纯利润为万元,进行技术改造后的累计纯利润为万元(须扣除技术改造资金),求的表达式;

2)以上述预测,从今年起该企业至少经过多少年后,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?

【答案】1 ;(24

【解析】

1)根据等差数列前项和公式可得的表达式,利用分组求和与等比数列前项和相结合可得的表达式;(2)作差,利用函数的单调性,即可得到结论.

(1)依题设,

(2)

因为函数上为增函数,

时,

时,

∴仅当时,

至少经过4年,该企业进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是平面直角坐标系中两两不同的四点,,,,则称调和分割.已知平面上的点调和分割点,则下列说法正确的是

A. 可能线段的中点

B. 可能线段的中点

C. 可能同时在线段

D. 不可能同时在线段的延长线上

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=ax-lnx)(aR).

(Ⅰ)试讨论函数fx)的单调性;

(Ⅱ)若对任意x∈(0+∞),不等式fx)<+x-1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是(

A.公差为0的等差数列是等比数列B.成等比数列的充要条件是

C.公比的等比数列是递减数列D.成等差数列的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在轴上,且经过点.

1)求圆的标准方程;

2)过点的直线与圆相交于两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出的是2017年11月-2018年11月某工厂工业原油产量的月度走势图,则以下说法正确的是( )

A. 2018年11月份原油产量约为51.8万吨

B. 2018年11月份原油产量相对2017年11月增加1.0%

C. 2018年11月份原油产量比上月减少54.9万吨

D. 2018年1-11月份原油的总产量不足15000万吨

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,F1F2是椭圆C1y2=1与双曲线C2的公共焦点,AB分别是C1C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是___

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的是()

A. 若函数为奇函数,则

B. 若数列为常数列,则既是等差数列也是等比数列;

C. 中,的充要条件;

D. 若两个变量的相关系数为,则越大,之间的相关性越强.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在轴上的椭圆,离心率,且椭圆过点.

(1)求椭圆的方程;

(2)设椭圆左、右焦点分别为,过的直线与椭圆交于不同的两点,则的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案