已知椭圆的焦点坐标为F1(-1,0),F2(1,0),过F2垂直于长轴的直线交椭圆于P,Q两点,且|PQ|=3.
(1)求椭圆的方程;
(2)过F2的直线l与椭圆交于不同的两点M,N,则△F1MN的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
(1)=1(2)最大值为π,且此时直线l的方程为x=1.
【解析】(1)设椭圆方程为=1(a>b>0),
由焦点坐标可得c=1.由|PQ|=3,可得=3.
又a2-b2=1,得a=2,b=.故椭圆方程为=1.
(2)设M(x1,y1),N(x2,y2),不妨令y1>0,y2<0,
设△F1MN的内切圆的半径R,
则△F1MN的周长为4a=8,S△F1MN=(|MN|+|F1M|+|F1N|)R=4R,
因此要使△F1MN内切圆的面积最大,则R最大,此时S△F1MN也最大.
S△F1MN=F1F2||y1-y2|=y1-y2,
由题知,直线l的斜率不为零,可设直线l的方程为x=my+1,
由得(3m2+4)y2+6my-9=0,
得y1=,y2=,
则S△F1MN=y1-y2=,令t=,则t≥1,
则S△F1MN===.令f(t)=3t+,则f′(t)=3-,
当t≥1时,f′(t)>0,所以f(t)在[1,+∞)上单调递增,
有f(t)≥f(1)=4,S△F1MN≤=3,
当t=1,m=0时,S△F1MN=3,又S△F1MN=4R,∴Rmax=
这时所求内切圆面积的最大值为π.
故△F1MN内切圆面积的最大值为π,且此时直线l的方程为x=1.
科目:高中数学 来源:2014年高考数学(理)二轮复习专题能力测评1练习卷(解析版) 题型:解答题
已知向量a=,b=,且x∈.
(1)求a·b及|a+b|;
(2)若f(x)=a·b-2λ|a+b|的最小值为-,求正实数λ的值.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练训练7练习卷(解析版) 题型:填空题
若α,β∈,cos =,sin =-,则cos (α+β)=________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练训练18练习卷(解析版) 题型:选择题
甲射击命中目标的概率是,乙命中目标的概率是,丙命中目标的概率是.现在三人同时射击目标,则目标被击中的概率为( ).
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练训练17练习卷(解析版) 题型:选择题
已知P是△ABC所在平面内一点,+2=0,现将一粒黄豆随机撒在△ABC内,则黄豆落在△PBC内的概率是( ).
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练训练16练习卷(解析版) 题型:填空题
抛物线x2=2py(p>0)的焦点为F,其准线与双曲线=1相交于A,B两点,若△ABF为等边三角形,则p=________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练训练15练习卷(解析版) 题型:解答题
已知椭圆C的中心为平面直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是7和1.
(1)求椭圆C的方程;
(2)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的一点,=λ,求点M的轨迹方程,并说明轨迹是什么曲线.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练训练14练习卷(解析版) 题型:选择题
已知圆的方程为x2+y2-6x-8y=0,设该圆中过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积是( ).
A.10 B.20 C.30 D.40
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练训练10练习卷(解析版) 题型:填空题
观察下列等式
12=1
12-22=-3
12-22+32=6
12-22+32-42=-10
……
照此规律,第n个等式可为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com