精英家教网 > 高中数学 > 题目详情

【题目】双曲线的离心率为2,右焦点到它的一条渐近线的距离为

(1)求双曲线的标准方程;

(2)是否存在过点且与双曲线的右支角不同的两点的直线,当点满足时,使得点在直线上的射影点满足?若存在,求出直线的方程;若不存在,说明理由。

【答案】(1) (2) 存在这样的直线满足条件,其方程为

【解析】试题分析:(1)由点到直线的距离公式可知: ,结合即可求得,进而根据离心率可得,从而求得方程;

(2)(2)假设存在满足条件的直线l,直线l的斜率不存在时,求得N,P,Q坐标,由,此时不满足条件;当斜率存在时,设l的方程为y=k(x-2),代入双曲线方程,由韦达定理及向量的数量积的坐标表示,即,代入即可求得k的值,求得直线方程.

试题解析:

(1)双曲线焦点在x轴上,设右焦点为(c,0),一条渐近线为bx-ay=0.

由点到直线的距离公式可知: ,由,解得.

由双曲线的离心率为,解得.

所以,双曲线的方程为.

(2)因为,所以的中点,

假设存在满足条件的直线

若直线的斜率不存在时,此时点即为,可解得

所以,所以,此时不满足条件。

若直线的斜率存在时,设斜率为,则的方程为,联立

,要使得与双曲线交于右支的不同的两点,

须要,即,可得

,所以

又因为在直线上的射影为满足

所以

所以

可得,又因为,所以,即

所以存在这样的直线满足条件,其方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆的方程为: ,直线的方程为

)当时,求直线被圆截得的弦长

)当直线被圆截得的弦长最短时,求直线的方程

)在()的前提下,若为直线上的动点,且圆上存在两个不同的点到点的距离为,求点的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=Asin(ωxφ)(A≠0,ω>0,φ<)的图象关于直线对称,它的最小正周期为π,则(   )

A. f(x)的图象过点(0,) B. f(x)上是减函数

C. f(x)的一个对称中心是 D. f(x)的一个对称中心是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,若成等差数列,且三个内角也成等差数列,则的形状为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在函数的图象上,数列的前项和为,数列的前 项和为,且的等差中项.

)求数列的通项公式.

)设,数列满足.求数列的前项和

)在()的条件下,设是定义在正整数集上的函数,对于任意的正整数,恒有成立,且为常数,),试判断数列是否为等差数列,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M: 及其上一点A24

1)设圆Nx轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;

2)设平行于OA的直线l与圆M相交于BC两点,且BC=OA,求直线l的方程;

3)设点Tt,o)满足:存在圆M上的两点PQ,使得,求实数t的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,动点满足成等差数列。

(1)求点的轨迹方程;

(2)对于轴上的点,若满足,则称点为点对应的“比例点”,问:对任意一个确定的点,它总能对应几个“比例点”?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

1时,求函数上的最大值和最小值;

2时,是否存在实数,当是自然对数底时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,圆轴的正半轴交于点,以点为圆心的圆与圆交于两点.

(1)当时,求的长;

(2)当变化时,求的最小值;

(3)过点的直线与圆A切于点,与圆分别交于点,若点的中点,试求直线的方程.

查看答案和解析>>

同步练习册答案