【题目】双曲线的离心率为2,右焦点到它的一条渐近线的距离为 。
(1)求双曲线的标准方程;
(2)是否存在过点且与双曲线的右支角不同的两点的直线,当点满足时,使得点在直线上的射影点满足?若存在,求出直线的方程;若不存在,说明理由。
【答案】(1) (2) 存在这样的直线满足条件,其方程为或
【解析】试题分析:(1)由点到直线的距离公式可知: ,结合即可求得,进而根据离心率可得,从而求得方程;
(2)(2)假设存在满足条件的直线l,直线l的斜率不存在时,求得N,P,Q坐标,由,此时不满足条件;当斜率存在时,设l的方程为y=k(x-2),代入双曲线方程,由韦达定理及向量的数量积的坐标表示,即,代入即可求得k的值,求得直线方程.
试题解析:
(1)双曲线焦点在x轴上,设右焦点为(c,0),一条渐近线为bx-ay=0.
由点到直线的距离公式可知: ,由,解得.
由双曲线的离心率为,解得.
所以,双曲线的方程为.
(2)因为,所以是的中点,
假设存在满足条件的直线,
若直线的斜率不存在时,此时点即为,可解得,
所以,所以,此时不满足条件。
若直线的斜率存在时,设斜率为,则的方程为,联立,
得,要使得与双曲线交于右支的不同的两点,
须要,即,可得,
又,所以
又因为在直线上的射影为满足,
所以,
所以,
即,
可得或,又因为,所以,即,
所以存在这样的直线满足条件,其方程为或。
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆的方程为: ,直线的方程为.
()当时,求直线被圆截得的弦长;
()当直线被圆截得的弦长最短时,求直线的方程;
()在()的前提下,若为直线上的动点,且圆上存在两个不同的点到点的距离为,求点的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=Asin(ωx+φ)(A≠0,ω>0,<φ<)的图象关于直线对称,它的最小正周期为π,则( )
A. f(x)的图象过点(0,) B. f(x)在上是减函数
C. f(x)的一个对称中心是 D. f(x)的一个对称中心是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点在函数的图象上,数列的前项和为,数列的前 项和为,且是与的等差中项.
()求数列的通项公式.
()设,数列满足,.求数列的前项和.
()在()的条件下,设是定义在正整数集上的函数,对于任意的正整数,,恒有成立,且(为常数,),试判断数列是否为等差数列,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M: 及其上一点A(2,4)
(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;
(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;
(3)设点T(t,o)满足:存在圆M上的两点P和Q,使得,求实数t的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,动点满足成等差数列。
(1)求点的轨迹方程;
(2)对于轴上的点,若满足,则称点为点对应的“比例点”,问:对任意一个确定的点,它总能对应几个“比例点”?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数().
(1)当时,求函数在上的最大值和最小值;
(2)当时,是否存在正实数,当(是自然对数底数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,圆:与轴的正半轴交于点,以点为圆心的圆:与圆交于,两点.
(1)当时,求的长;
(2)当变化时,求的最小值;
(3)过点的直线与圆A切于点,与圆分别交于点,,若点是的中点,试求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com