精英家教网 > 高中数学 > 题目详情
10.若x1满足3x-1=2-x,x2满足log3(x-1)+x-2=0,则x1+x2等于(  )
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.3

分析 方法一:采用换元法,根据互为反函数图象的对称性解题;
方法二:通过观察得出函数的零点,即可得出结果.

解答 解:方法一:令t=x-1,
方程①可变形为:3t=1-t,t1为该方程的根,
方程②可变形为:log3t=1-t,t2为该方程的根,
由于函数y=3t与函数y=log3t互为反函数,
所以它们的图象关于直线y=x轴对称,
故两图象与直线y=1-t的交点(t1,y1),(t2,y2)也关于y=x对称,
所以,t1+t2=1,
而x1=t1+1,x2=t2+1,所以,x1+x2=t1+t2+2=3,
方法二:观察题中方程,
x1满足3x-1=2-x,显然x1=1是方程的根,
x2满足log3(x-1)+x-2=0,显然x2=2是方程的根,
所以,x1+x2=3.
故选:D.

点评 本题主要考查了函数的零点,指数,对数函数的图象和性质,运用了函数与方程,数形结合的解题思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.实数a>1,b>1是a+b>2的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.一个三角形的三个内角A,B,C 成等差数列,那么tan(A+C)的值是$-\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列函数中,在区间(1,+∞)上为增函数的是(  )
A.y=-3x+1B.y=$\frac{2}{x}$C.y=x2-4x+5D.y=|x-1|+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆C与y轴相切,圆心在x轴下方并且与x轴交于A(1,0),B(9,0)两点.
(Ⅰ)求圆C的方程;
(Ⅱ)若直线l过点A(1,0)且被圆C所截弦长为6,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知曲线y=x3+3x2+6x-10,点P(x,y)在该曲线上移动,在P点处的切线设为l.
(1)求证:此函数在R上单调递增;
(2)求l的斜率的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.记复平面内复数$\sqrt{3}$+i的向量为$\overrightarrow{a}$,复数-$\frac{\sqrt{3}}{2}$+$\frac{1}{2}$i对应的向量为$\overrightarrow{b}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.150°B.120°C.60°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\frac{x}{1+|x|}$(x∈R) 时,则下列结论正确的是(  )
(1)?x∈R,等式f(-x)+f(x)=0恒成立
(2)?m∈(0,1),使得方程|f(x)|=m有两个不等实数根
(3)?x1,x2∈R,若x1≠x2,则一定有f(x1)≠f(x2
(4)?k∈(1,+∞),使得函数g(x)=f(x)-kx在R上有三个零点.
A.(1)(2)B.(2)(3)C.(1)(2)(3)D.(1)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若|$\overrightarrow{AB}$|=2,|$\overrightarrow{BC}$|=5,则|$\overrightarrow{AC}$|的取值范围是(  )
A.[3,7]B.(3,7)C.[2,5]D.(2,5)

查看答案和解析>>

同步练习册答案