精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy,椭圆C的中心为原点,焦点F1F2在x轴上,离心率为
2
2
.过Fl的直线交于A,B两点,且△ABF2的周长为16,那么C的方程为
 
分析:根据题意,△ABF2的周长为16,即BF2+AF2+BF1+AF1=16,结合椭圆的定义,有4a=16,即可得a的值;又由椭圆的离心率,可得c的值,进而可得b的值;由椭圆的焦点在x轴上,可得椭圆的方程.
解答:解:根据题意,△ABF2的周长为16,即BF2+AF2+BF1+AF1=16;
根据椭圆的性质,有4a=16,即a=4;
椭圆的离心率为
2
2
,即
c
a
=
2
2
,则a=
2
c,
将a=
2
c,代入可得,c=2
2
,则b2=a2-c2=8;
则椭圆的方程为
x2
16
+
y2
8
=1;
故答案为:
x2
16
+
y2
8
=1.
点评:本题考查椭圆的性质,此类题型一般与焦点三角形联系,难度一般不大;注意结合椭圆的基本几何性质解题即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左焦点为F,右顶点为A,动点M为右准线上一点(异于右准线与x轴的交点),设线段FM交椭圆C于点P,已知椭圆C的离心率为
2
3
,点M的横坐标为
9
2

(1)求椭圆C的标准方程;
(2)设直线PA的斜率为k1,直线MA的斜率为k2,求k1•k2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,圆C的参数方程为
x=2cosθ
y=2sinθ
(θ为参数),直线l经过点P(1,1),倾斜角α=
π
6

(1)写出直线l的参数方程;
(2)设l与圆圆C相交与两点A,B,求点P到A,B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,圆C:x2+y2=4分别交x轴正半轴及y轴负半轴于M,N两点,点P为圆C上任意一点,则
PM
PN
的最大值为
4+4
2
4+4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知点M(0,3),直线l:x+y-4=0,点N(x,y)是圆C:x2+y2-2x-1=0上的动点,MA⊥l,NB⊥l,垂足分别为A、B,则线段AB的最大值为
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,抛物线y2=2x的焦点为F.设M是抛物线上的动点,则
MO
MF
的最大值为
2
3
3
2
3
3

查看答案和解析>>

同步练习册答案