精英家教网 > 高中数学 > 题目详情
19.设直线l过坐标原点,它的倾斜角为α,如果将直线l绕坐标原点按逆时针方向旋转45°,得到直线l1,那么l1的倾斜角为$\left\{\begin{array}{l}{[4{5}^{°},18{0}^{°}),α∈[{0}^{°},13{5}^{°})}\\{[α-13{5}^{°},4{5}^{°}),α∈[13{5}^{°},18{0}^{°})}\end{array}\right.$.

分析 利用直线的倾斜角的范围是[0°,180°),分类讨论即可得出.

解答 解:若α∈[0°,135°),则那么l1的倾斜角为[45°,180°);
若α∈[135°,180°),则那么l1的倾斜角为[α-135°,45°).
∴l1的倾斜角为$\left\{\begin{array}{l}{[4{5}^{°},18{0}^{°}),α∈[{0}^{°},13{5}^{°})}\\{[α-13{5}^{°},4{5}^{°}),α∈[13{5}^{°},18{0}^{°})}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{[4{5}^{°},18{0}^{°}),α∈[{0}^{°},13{5}^{°})}\\{[α-13{5}^{°},4{5}^{°}),α∈[13{5}^{°},18{0}^{°})}\end{array}\right.$.

点评 本题考查了直线的倾斜角范围,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.下列命题中真命题的个数是(  )
①函数f(x)=$\frac{1}{x}$在定义域内单调递减;
②命题“?x0∈R.x02-x0+1<0”的否定是“?x∈R,x2-x+1≥0”;
③已知m为实数,直线l1:mx+y+3=0,直线l2(3m-2)x+my+4=0,则m=1是两直线互相平行的必要不充分条件;
④关于x的一元二次方程x2-2ax+4=0的一个根大于1.-个根小于1,则实数a的取值范围是a∈($\frac{5}{2}$,+∞)
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知{an}是正项等差数列,{an}的前n项和记为Sn,a1=3,a2•a3=S5
(1)求{an}的通项公式;
(2)设数列{bn}的通项为bn=$\frac{1}{{S}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求中心在原点,对称轴为坐标轴,且满足下列条件的双曲线方程:
(1)双曲线过点(3,9$\sqrt{2}$),离心率e=$\frac{\sqrt{10}}{3}$;
(2)双曲线C的右焦点为(2,0),右顶点为($\sqrt{3}$,0);
(3)与双曲线x2-2y2=2有共同的渐近线,且经过点(2,-2);
(4)过点P(2,-1),渐近线方程是y=±3x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知△ABC的内角A、B、C所对应的边分别是a、b、c,$\overrightarrow{p}$=(asin2C,c),$\overrightarrow{q}$=($\frac{1}{sin(A+B)}$,1),且$\overrightarrow{p}$•$\overrightarrow{q}$=2b.
(1)求角A的大小;
(2)若a=1,求△ABC的周长l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知cosx+cosy=$\frac{\sqrt{2}}{2}$,求sinx+siny的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设向量$\overrightarrow{a}$=(-3,2),$\overrightarrow{b}$=(cosα,-$\frac{1}{3}$)(0°<α<180°),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则角α为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知a∈($\frac{π}{2}$,π,),cosa=-$\frac{3}{5}$,则tan$\frac{a}{2}$的值为2:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知三棱锥E-ABD各个面均为直角三角形,且Rt△ADE的直角顶点为A,其中AE=AB,∠ABD=$\frac{π}{6}$,以AB为直径在平面ABD内画圆,且经过点D,任取圆上一点C(不与A,B两点重合).
(1)求证:△BCE为直径三角形;
(2)若四边形ABCE为一个等腰梯形,且BC=1,求几何体C-BDE的体积.

查看答案和解析>>

同步练习册答案