精英家教网 > 高中数学 > 题目详情
若数列满足,则称数列为“平方递推数列”.已知数列中,,点在函数的图象上,其中为正整数.
(1)证明数列是“平方递推数列”,且数列为等比数列;
(2)设(1)中“平方递推数列”的前项积为
,求
(3)在(2)的条件下,记,求数列的前项和,并求使的最小值.
(1)见解析;(2) ;(3)

试题分析:(1)根据,得到,即是“平方递推数列”.
进一步对两边取对数得 ,利用等比数列的定义证明.
(2)首先得到  , 应用等比数列的求和公式即得.
(3)求通项、求和,根据,得到,再根据,即得解.
试题解析:(1)由题意得:,即
是“平方递推数列”.                    2分
两边取对数得
所以数列是以为首项,为公比的等比数列.   4分
(2)由(1)知              5分

                        8分
(3)                  9分
                      10分
,即           11分
,所以.                       12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列{an}为等差数列,若<-1,且它们的前n项和Sn有最大值,求使得Sn<0的n的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列{an}满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1cos x-an+2sin x满足f′=0.
(1)求数列{an}的通项公式;
(2)若bn=2(an+),求数列{bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设{an}是公比为正数的等比数列,a1=2,a3=a2+4,
(1)求{an}的通项公式;
(2)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an}的公差d=1,前n项和为Sn.
(1)若1,a1a3成等比数列,求a1
(2)若S5a1a9,求a1的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若数列{an}满足a1=2且anan-1=2n+2n-1Sn为数列{an}的前n项和,则log2(S2 012+2)=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)是定义在R上不恒为零的函数,且对于任意实数a,b∈R,满足:f(a·b)=af(b)+bf(a),f(2)=2,an=(n∈N*),bn=(n∈N*).
考察下列结论:
①f(0)=f(1);②f(x)为偶函数;
③数列{an}为等比数列;
④数列{bn}为等差数列.
其中正确的结论共有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设数列{an}满足a1+2a2=3,且对任意的n∈N*,点列{Pn(nan)}恒满足PnPn+1=(1,2),则数列{an}的前n项和Sn为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an}中,a2+a4=10,a5=9,数列{bn}中,b1=a1,bn+1=bn+an.
(1)求数列{an}的通项公式,写出它的前n项和Sn.
(2)求数列{bn}的通项公式.
(3)若cn=,求数列{cn}的前n项和Tn.

查看答案和解析>>

同步练习册答案